首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19902篇
  免费   1498篇
  国内免费   1413篇
  2024年   43篇
  2023年   273篇
  2022年   602篇
  2021年   1093篇
  2020年   732篇
  2019年   941篇
  2018年   834篇
  2017年   650篇
  2016年   922篇
  2015年   1296篇
  2014年   1525篇
  2013年   1561篇
  2012年   1810篇
  2011年   1610篇
  2010年   986篇
  2009年   838篇
  2008年   963篇
  2007年   789篇
  2006年   743篇
  2005年   592篇
  2004年   538篇
  2003年   483篇
  2002年   416篇
  2001年   374篇
  2000年   342篇
  1999年   316篇
  1998年   206篇
  1997年   190篇
  1996年   175篇
  1995年   153篇
  1994年   115篇
  1993年   108篇
  1992年   133篇
  1991年   110篇
  1990年   97篇
  1989年   58篇
  1988年   46篇
  1987年   49篇
  1986年   25篇
  1985年   26篇
  1984年   16篇
  1983年   20篇
  1982年   4篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1972年   1篇
  1966年   1篇
排序方式: 共有10000条查询结果,搜索用时 593 毫秒
981.
Alternative chemicals to diverse fossil-fuel-based products is urgently needed to mitigate the adverse impacts of fossil fuel depletion on human development. To this end, researchers have focused on the production of biochemical from readily available and affordable waste biomass. This is consistent with current guidelines for sustainable development and provides great advantages related to economy and environment. The search for suitable biochemical products is in progress worldwide. Therefore, this review recommends a biochemical (i.e., medium chain carboxylic acids (MCCAs)) utilizing an emerging biotechnological production platform called the chain elongation (CE) process. This work covers comprehensive introduction of the CE mechanism, functional microbes, available feedstock types and corresponding utilization strategies, major methods to enhance the performance of MCCAs production, and the challenges that need to be addressed for practical application. This work is expected to provide a thorough understanding of the CE technology, to guide and inspire researchers to solve existing problems in depth, and motivate large-scale MCCAs production.  相似文献   
982.
Metformin, a first-line antidiabetic drug, has been reported with anticancer activities in many types of cancer. However, its molecular mechanisms remain largely unknown. As a member of inhibitor of apoptosis proteins, survivin plays an important role in the regulation of cell death. In the present study, we investigated the role of survivin in metformin-induced anticancer activity in non–small cell lung cancer in vitro. Metformin mainly induced apoptotic cell death in A549 and H460 cell lines. It remarkably suppressed the expression of survivin, decreased the stability of this protein, then promoted its proteasomal degradation. Moreover, metformin greatly suppressed protein kinase A (PKA) activity and induced its downstream glycogen synthase kinase 3β (GSK-3β) activation. PKA activators, both 8-Br-cAMP and forskolin, significantly increased the expression of survivin. Consistently both GSK-3β inhibitor LiCl and siRNA restored the expression of survivin in lung cancer cells. Furthermore, metformin induced adenosine 5′-monophosphate-activated protein kinase (AMPK) activation. Suppression of the activity of AMPK with Compound C reversed the degradation of survivin induced by metformin, and meanwhile, restored the activity of PKA and GSK-3β. These results suggest that metformin kills lung cancer cells through AMPK/PKA/GSK-3β-axis–mediated survivin degradation, providing novel insights into the anticancer effects of metformin.  相似文献   
983.
984.
Chemoresistance often causes treatment failure of B-cell acute lymphoblastic leukemia (B-ALL). However, the mechanism remains unclear at present. Herein, overexpression of heme oxygenase-1 (HO-1) was found in the bone marrow stromal cells (BMSCs) from B-ALL patients developing resistance to vincristine (VCR), a chemotherapeutic agent. Two B-ALL cell lines Super B15 and CCRF-SB were cocultured with BMSCs transfected with lentivirus to regulate the expression of HO-1. Silencing HO-1 expression in BMSCs increased the apoptotic rates of B-ALL cell lines induced by VCR, whereas upregulating HO-1 expression reduced the rate. Cell cycle can be arrested in the G2/M phase by VCR. In contrast, B-ALL cells were arrested in the G0/G1 phase due to HO-1 overexpression in BMSCs, which avoided damage from the G2/M phase. Vascular endothelial growth factor (VEGF) in BMSCs, as a key factor in the microenvironment-associated chemoresistance, was also positively coexpressed with HO-1. VEGF secretion was markedly increased in BMSCs with HO-1 upregulation but decreased in BMSCs with HO-1 silencing. B-ALL cell lines became resistant to VCR when cultured with VEGF recombinant protein, so VEGF secretion induced by HO-1 expression may promote the VCR resistance of B-ALL cells. As to the molecular mechanism, the PI3K/AKT pathway mediated regulation of VEGF by HO-1. In conclusion, this study clarifies a mechanism by which B-ALL is induced to resist VCR through HO-1 overexpression in BMSCs, and provides a novel strategy for overcoming VCR resistance in clinical practice.  相似文献   
985.
Zbed3, a BED finger domain-containing protein was found to promote cancer proliferation by regulating β-catenin expression through interacting with Axin. But whether and how BED finger domain function in regulating cancer proliferation is unknown. We constructed five mutants of Zbed3, which lacks the Axin-Zbed3 binding site, and the 43 to 52, 69 to 77, 87 to 92, and 97 to 104 sequences in BED finger domain, respectively and named them as Z-A, Z1, Z2, Z3, and Z4. Transfection of both wild-type of Zbed3 and the mutants Z1, Z3, and Z4 (P < 0.05), but not Z2 (P > 0.05) significantly upregulated β-catenin expression in NCI-H1299 cells. Overexpression of both wild-type of Zbed3 and the mutants Z1, Z3, and Z4 (P < 0.05) but not Z2 (P > 0.05) significantly promoted cancer cell proliferation and invasion. The ability of proliferation (P < 0.05) but not invasion (P < 0.05) of cancer cells transfected with Z1 and Z4 was significantly lower than that with wild-type Zbed3 and Z3. Overexpression of wild-type Zbed3 (P < 0.05) but not the mutant Z-A, which lacks the binding site with Axin and Z2 (P > 0.05) significantly upregulated the interaction of Axin and Zbed3, β-catenin expression and the activity of Wnt signaling. Both overexpression of wild-type Zbed3 and the mutant Z1 and Z4 significantly upregulated the activity of Wnt signaling and promoted cancer cell proliferation (P < 0.05) but only overexpression of wild-type Zbed3 (P < 0.05), but not the mutant Z1, and Z4 (P > 0.05), significantly upregulated the expression of proliferating cell nuclear antigen (PCNA) in NCI-H1299 cells. These results indicate that Zbed3 may promote lung cancer cell proliferation through regulating PCNA expression besides regulating β-catenin expression and BED finger domain can impact on this function.  相似文献   
986.
987.
988.
989.
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号