首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   10篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2019年   5篇
  2018年   3篇
  2017年   2篇
  2016年   6篇
  2015年   2篇
  2014年   5篇
  2013年   5篇
  2012年   6篇
  2011年   2篇
  2010年   5篇
  2009年   3篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  2005年   3篇
  2004年   4篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1997年   1篇
  1996年   1篇
  1994年   3篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1976年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有84条查询结果,搜索用时 15 毫秒
11.
Dodder (Cuscuta campestris) is one of the most important pests of tomato causing severe losses in yield. Cuscutain is a pre-pro-protein produced by dodder that has a cysteine proteinase function essential for normal development of the haustoria and parasitism, which involves the secretion and activation of cuscutain cysteine protease in the host plant tissue. The propeptide subunit of this enzyme has an inhibitory function and restricts the enzymatic activity of cuscutain. Here, we transformed the inhibitory propeptide segment of this enzyme into tomato and examined the tomato resistance to C. campestris. We demonstrate the expression of inhibitory propeptide in transgenic plants and find that it effectively interrupted cuscutain enzyme activity and haustoria development at the endophytic stage. Mature haustoria infecting transgenic hosts showed defects in searching hyphae development and these structures were not elongate, and in most cases no functional haustoria were formed due to inhibitor expression in the transgenic plants after prehaustoria contact. Dodder grown on transgenic lines showed an overall reduction in vigor and fecundity due to defective attachment of haustoria. The increased growth of dodder-challenged transgenic plants relative to controls, demonstrates the efficacy of cysteine protease inhibition in parasite plant control.  相似文献   
12.
Stem cell‐based approaches offer great application potential in tissue engineering and regenerative medicine owing to their ability of sensing the microenvironment and respond accordingly (dynamic behavior). Recently, the combination of nanobiomaterials with stem cells has paved a great way for further exploration. Nanobiomaterials with engineered surfaces could mimic the native microenvironment to which the seeded stem cells could adhere and migrate. Surface functionalized nanobiomaterial‐based scaffolds could then be used to regulate or control the cellular functions to culture stem cells and regenerate damaged tissues or organs. Therefore, controlling the interactions between nanobiomaterials and stem cells is a critical factor. However, surface functionalization or modification techniques has provided an alternative approach for tailoring the nanobiomaterials surface in accordance to the physiological surrounding of a living cells; thereby, enhancing the structural and functional properties of the engineered tissues and organs. Currently, there are a variety of methods and technologies available to modify the surface of biomaterials according to the specific cell or tissue properties to be regenerated. This review highlights the trends in surface modification techniques for nanobiomaterials and the biological relevance in stem cell‐based tissue engineering and regenerative medicine. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:554–567, 2016  相似文献   
13.
Recombinant human bone morphogenetic proteins (rhBMPs) have been extensively investigated for developing therapeutic strategies aimed at the restoration and treatment of orthopaedic as well as craniofacial conditions. In this first part of the review, we discuss the rationale for the necessary use of carrier systems to deliver rhBMP-2 and rhBMP-7 to sites of bone tissue regeneration and repair. General requirements for growth factor delivery systems emphasizing the distinction between localized and release-controlled delivery strategies are presented highlighting the current limitations in the development of an effective rhBMP delivery system applicable in clinical bone tissue engineering.  相似文献   
14.
Full-length cDNA coding for human glucose-6-phosphate dehydrogenase (G6PD) was inserted into a eukaryotic expression vector containing the immediate early promoter of cytomegalovirus. When this plasmid was introduced into cos cells by transfection it led to the production of high levels of human G6PD. cDNAs containing mutations found in G6PD-deficient individuals were constructed by in vitro mutagenesis and expressed in the same system. Characterization of the G6PD proteins obtained in this way confirmed the primary structure inferred for the variant enzymes. An enzyme in which lysine-205 had been mutated to threonine was produced and found to have no G6PD activity, proving that this lysine residue is essential for enzyme activity in human G6PD.  相似文献   
15.
16.
Feeding behavior of Plutella xylostella under optional to non-optional conditions was studied at 10°C, 15°C, 20°C, and 25°C on Indian mustard, Brassica juncea. The study reveals that the variety Pusa Bahar was significantly less preferred by the larvae as compared with Pusa Bold and Varuna under optional to non-optional conditions. Larvae of P. xylostella consumed more food at 25°C than 20°C, 15°C and 10°C. Larval survival was found to be highest on cabbage (control) as compared with Indian mustard and was found to vary with host plants and temperature. The larval survival decreased to 11.29% on Pusa Bahar at 10°C. Increasing the temperature from 10°C to 20°C, larval mortality resulted more on Varuna than Pusa Bahar and Pusa Bold. Developmental period was prolonged on Pusa Bold at 10°C while it was shortest on cabbage at 25°C. A total of 536.47 degree days were required to complete the development by immature stages on Varuna at 25°C and 421.64 degree days on cabbage.  相似文献   
17.
Heat stress is a major production constraint of sunflower worldwide. Therefore, various populations (parental, F1, F2, F3, and plant progenies) of sunflower were screened for leaf gas-exchange traits with the objectives to formulate selection criteria of heat resistance and development of heat-resistant lines. Initial screening and F2 seeds exposed to heat stress (45°C) resulted in the development of an adapted F2 population that showed leaf gas-exchange and morphological traits better than the unadapted population. Correlation coefficients of traits were partitioned into direct and indirect effects via a path analysis technique to determine the cause of their relationship with a basic parameter such as a reproductive head mass (HM). Path analysis showed a positive direct effect of leaf temperature (Tleaf) (0.32) on HM and also an indirect effect (0.77) of the transpiration rate (E) on HM. Moreover, Tleaf showed high heritability estimates. Tleaf was used to select superior plants within the F2 population. This selection brought about an improvement in the net photosynthetic rate (P N) and E as it was indicated from progeny performance and realized heritability. Progenies selected on the basis of Tleaf also showed an increase in achene yield and heat resistance over unselected F3 progenies and a commercial hybrid.  相似文献   
18.
Proto-oncogenes and tumor suppressors critically control cell-fate decisions like cell survival, adaptation and death. These processes are regulated by Ca2 + signals arising from the endoplasmic reticulum, which at distinct sites is in close proximity to the mitochondria. These organelles are linked by different mechanisms, including Ca2 +-transport mechanisms involving the inositol 1,4,5-trisphosphate receptor (IP3R) and the voltage-dependent anion channel (VDAC). The amount of Ca2 + transfer from the endoplasmic reticulum to mitochondria determines the susceptibility of cells to apoptotic stimuli. Suppressing the transfer of Ca2 + from the endoplasmic reticulum to the mitochondria increases the apoptotic resistance of cells and may decrease the cellular responsiveness to apoptotic signaling in response to cellular damage or alterations. This can result in the survival, growth and proliferation of cells with oncogenic features. Clearly, proper maintenance of endoplasmic reticulum Ca2 + homeostasis and dynamics including its links with the mitochondrial network is essential to detect and eliminate altered cells with oncogenic features through the apoptotic pathway. Proto-oncogenes and tumor suppressors exploit the central role of Ca2 + signaling by targeting the IP3R. There are an increasing number of reports showing that activation of proto-oncogenes or inactivation of tumor suppressors directly affects IP3R function and endoplasmic reticulum Ca2 + homeostasis, thereby decreasing mitochondrial Ca2 + uptake and mitochondrial outer membrane permeabilization. In this review, we provide an overview of the current knowledge on the proto-oncogenes and tumor suppressors identified as IP3R-regulatory proteins and how they affect endoplasmic reticulum Ca2 + homeostasis and dynamics.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号