首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11087篇
  免费   1011篇
  国内免费   935篇
  2024年   18篇
  2023年   120篇
  2022年   291篇
  2021年   562篇
  2020年   398篇
  2019年   472篇
  2018年   497篇
  2017年   361篇
  2016年   483篇
  2015年   691篇
  2014年   755篇
  2013年   833篇
  2012年   992篇
  2011年   888篇
  2010年   553篇
  2009年   525篇
  2008年   570篇
  2007年   541篇
  2006年   492篇
  2005年   383篇
  2004年   378篇
  2003年   346篇
  2002年   309篇
  2001年   223篇
  2000年   174篇
  1999年   182篇
  1998年   124篇
  1997年   111篇
  1996年   89篇
  1995年   88篇
  1994年   95篇
  1993年   67篇
  1992年   80篇
  1991年   75篇
  1990年   64篇
  1989年   42篇
  1988年   45篇
  1987年   29篇
  1986年   24篇
  1985年   27篇
  1984年   10篇
  1983年   12篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
991.
Huang H  Zhang Y  Liu X  Li Z  Xu W  He S  Huang Y  Zhang H 《DNA and cell biology》2011,30(6):407-412
Evodiamine-induced apoptosis has been shown to have anticancer activity by eradication of some carcinoma cell lines. This study was designed to evaluate the effects of evodiamine on the viability of human gastric cancer SGC-7901 cells and to define the cell death pathway. Flow cytometry detection showed that 1.5?μM evodiamine significantly induced SGC-7901 cell apoptosis in a time-dependent manner. This apoptosis was partially inhibited by the pancaspase inhibitor carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoro-methylketone, which suggests that evodiamine-induced apoptosis in SGC-7901 cells is partially caspase independent. Further, the total content of sphingomyelin was decreased and expression of acid sphingomyelinase (aSMase) and neutral SMase genes in the SGC-7901cells was upregulated. Protein expression of aSMase, which was exposed to evodiamine, was shown to be increased by western blot analysis and could have been responsible for inducing caspase-independent apoptosis. Our results indicate that evodiamine stimulates upregulation of aSMase expression and hydrolysis of sphingomyelin into ceramide, which might be one of the mechanisms by which apoptosis occurs in SGC-7901 cells.  相似文献   
992.
Liu Y  Chipot C  Shao X  Cai W 《Physical biology》2011,8(5):056005
Smith-Lemli-Opitz syndrome, a congenital and developmental malformation disease, is typified by abnormal accumulation of 7-dehydrocholesterol (7DHC), the immediate precursor of cholesterol (CHOL), and depletion thereof. Knowledge of the effect of 7DHC on the biological membrane is, however, still fragmentary. In this study, large-scale atomistic molecular dynamics simulations, employing two distinct force fields, have been conducted to elucidate differences in the structural properties of a hydrated dimyristoylphosphatidylcholine bilayer due to CHOL and 7DHC. The present series of results indicate that CHOL and 7DHC possess virtually the same ability to condense and order membranes. Furthermore, the condensing and ordering effects are shown to be strengthened at increasing sterol concentrations.  相似文献   
993.

Background  

The traditional phylogeny analysis within gene family is mainly based on DNA or amino acid sequence homologies. However, these phylogenetic tree analyses are not suitable for those "non-traditional" gene families like microRNA with very short sequences. For the normal protein-coding gene families, low bootstrap values are frequently encountered in some nodes, suggesting low confidence or likely inappropriateness of placement of those members in those nodes.  相似文献   
994.
995.
Yang JS  Ren HB  Xie YJ 《Biomacromolecules》2011,12(8):2982-2987
1-Octyl amine was covalently coupled to sodium alginate(NaAlg) in an aqueous-phase reaction via acidamide functions using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC-HCl) as a coupling reagent to provide octyl-grafted amphiphilic alginate-amide derivative(OAAD) for subsequent use in λ-cyhalothrin (LCH) microcapsule application. The structure of OAAD was confirmed by FT-IR and (1)H NMR spectroscopies. The new alginate-amide derivative was used for fabricating microcapsule that can effectively encapsulate LCH by emulsification-gelation technique. The microcapsules were characterized by optical microscopy (OM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and laser particle size analysis. The encapsulation efficiency and drug release behavior of LCH from the microcapsules were investigated. Results showed that the microcapsules were in spherical form with diameter mostly in the range of 0.5-10 μm and possessed a structure with LCH as core and OAAD as shell. The encapsulation efficiency and the release performance of the microcapsules were influenced by DS of OAAD and amount of CaCl(2). The mechanism of LCH release was found to vary from anomalous to Fickian to quasi-Fickian transport with the DS of OAAD varied from 10.8 to 30.3 and the CaCl(2)/emulsion ratios varied from 0.09 to 0.03%.  相似文献   
996.
Lai M  Cai K  Zhao L  Chen X  Hou Y  Yang Z 《Biomacromolecules》2011,12(4):1097-1105
To investigate the influence of surface-functionalized substrates with nanostructures on the behaviors of mesenchymal stem cells, we conjugated bone morphogenetic protein 2 (BMP2) onto TiO(2) nanotubes with different diameter sizes of 30, 60, and 100 nm for in vitro study. Polydopamine was employed as the intermediate layer for the conjugation of BMP2. The successful conjugation of BMP2 onto TiO(2) nanotubes was revealed by field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), and contact angle measurements. Immunofluorescence staining of vinculin, osteocalcin (OCN), and osteopontin (OPN) revealed that BMP2-functionalized TiO(2) nanotubes was favorable for cell growth. More importantly, MSCs cultured onto BMP2-functionalized TiO(2) nanotubes displayed significantly higher (p < 0.05 or p < 0.01) differentiation levels of ALP and mineralization after 7 and 14 day cultures, respectively. The results suggested that surface functionalization of TiO(2) nanotubes with BMP2 was beneficial for cell proliferation and differentiation. The approach presented here has potential application for the development of titanium-based implants for enhanced bone osseointegration.  相似文献   
997.
998.
Sun LL  Li WJ  Wang HT  Chen J  Deng P  Wang Y  Sang JL 《Eukaryotic cell》2011,10(11):1565-1573
The ability of the pathogenic fungus Candida albicans to switch cellular morphologies is important for infection and virulence. Recent studies have revealed that C. albicans yeast cells can switch to filamentous growth under genotoxic stress in a manner dependent on the DNA replication/damage checkpoint. Here, we have investigated the functions of Pph3 (orf19.4378) and Psy2 (orf19.3685), whose orthologues in Saccharomyces cerevisiae mediate the dephosphorylation of the DNA damage checkpoint kinase Rad53 and the histone variant H2AX during recovery from DNA damage. Deleting PPH3 or PSY2 causes hypersensitivity to DNA-damaging agents, including cisplatin, methylmethane sulfonate (MMS), and UV light. In addition, pph3Δ and psy2Δ cells exhibit strong filamentous growth under genotoxic stress. Flow cytometry analysis shows that the mutant cells have lost the ability to adapt to genotoxic stress and remain arrested even after the stress is withdrawn. Furthermore, we show that Pph3 and Psy2 are required for the dephosphorylation of Rad53, but not H2AX, during DNA damage recovery. Taken together, these results show that C. albicans Pph3 and Psy2 have important roles in mediating genotoxin-induced filamentous growth and regulating Rad53 dephosphorylation.  相似文献   
999.
We numerically study the extraordinary optical transmission of a plasmonic structure that combines a circular nanoantenna and a vertical annular nanoslit etched into a gold film under radially polarized illumination. The nanoantenna collects the incident field and localizes it in a horizontal Fabry-Pérot cavity over the gold film. The vertical nanoslit positioned at the maximal field in the horizontal cavity couples the localized field and facilitates its transmission to the free space. Due to the symmetry matching between the structure and the illumination polarization, surface plasmons can be excited effectively and enhance the transmission. Through optimizing the structure parameters, the transmission efficiency can be greatly enhanced by 225 times for a resonant annular nanoslit and 251 times for a non-resonant annular nanoslit. This axisymmetric extraordinary optical transmission setup may be fabricated on the facet of an optical fiber for optical sensing applications.  相似文献   
1000.
The development of Casparian strips (CSs) on the endo- and exodermis and their chemical components in roots of three cultivars of rice (Oryza sativa) with different salt tolerance were compared using histochemistry and Fourier transform infrared (FTIR) spectroscopy. The development and deposition of suberin lamellae of CSs on the endo- and exodermis in the salt-tolerant cultivar Liaohan 109 was earlier than in the moderately tolerant cultivar Tianfeng 202 and the sensitive cultivar Nipponbare. The detection of chemical components indicated major contributions to the structure of the outer part from aliphatic suberin, lignin and cell wall proteins and carbohydrates to the rhizodermis, exodermis, sclerenchyma and one layer of cortical cells in series (OPR) and the endodermal Casparian strip. Moreover, the amounts of these major chemical components in the outer part of the Liaohan 109 root were higher than in Tianfeng 202 and Nipponbare, but there was no distinct difference in endodermal CSs among the three rice cultivars. The results suggest that the exodermis of the salt-tolerant cultivar Liaohan 109 functions as a barrier for resisting salt stress.Key words: casparian strip, chemical components, development, rice, rootPlant roots are in direct contact with the soil environment and thus particularly affected by unfavorable conditions. To withstand the surrounding environment, roots have developed anatomical and physiological adaptations. The development of Casparian strips (CSs) in the root endo- and exodermis is one such strategy.13 In roots of most species, the sequence of development of the endo- and exodermis is roughly the same and involves two consecutive developmental stages: (1) formation of CSs in radial and transverse walls impregnating the primary cell wall pores with lipophilic and aromatic substances and (2) deposition of suberin lamellae to the inner surface of anticlinal and tangential cell walls.46A major function of the CS is to block the non-selective apoplastic bypass flow of water and ions into the stele.3 Therefore, the structure,79 chemical nature,1012 and physiological function13,14 of endo- and exdodermal CSs in roots have been the focus of many investigations. Although oxygen loss, drought and salinity can influence the development and chemical nature of CSs in different rice cultivars,1519 few investigations have considered the development and formation of endo- and exdodermal CSs in the roots of rice cultivars with different salt tolerance under normal growing conditions.In the present paper, light microscopy and Fourier transform infrared (FTIR) spectroscopy were used to examine the cytochemistry and root anatomy of isolated CSs. The aim was to compare anatomical development and chemical characteristics of the endoand exdodermal CSs of three rice (Oryza sativa L.) cultivars having different salt tolerance in north China: the salt-tolerant Liaohan 109 and two widely grown cultivars, Tianfeng 202 and Nipponbare.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号