首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2992篇
  免费   255篇
  3247篇
  2023年   18篇
  2022年   40篇
  2021年   69篇
  2020年   23篇
  2019年   53篇
  2018年   60篇
  2017年   47篇
  2016年   108篇
  2015年   171篇
  2014年   208篇
  2013年   240篇
  2012年   329篇
  2011年   252篇
  2010年   200篇
  2009年   135篇
  2008年   200篇
  2007年   187篇
  2006年   160篇
  2005年   158篇
  2004年   144篇
  2003年   117篇
  2002年   119篇
  2001年   31篇
  2000年   13篇
  1999年   24篇
  1998年   18篇
  1997年   15篇
  1996年   13篇
  1995年   24篇
  1994年   7篇
  1993年   13篇
  1992年   12篇
  1991年   9篇
  1990年   8篇
  1989年   2篇
  1988年   4篇
  1985年   1篇
  1984年   1篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1974年   1篇
排序方式: 共有3247条查询结果,搜索用时 15 毫秒
101.
In this study, we analyzed the regulation and functional role of CXCL16 in human mesangial cells (hMCs). We can show, that CXCL16 is constitutively expressed in hMCs and is further up-regulated by cytokine mix (IFNγ, TNFα, and IL1β). The constitutive release of CXCL16 from hMCs was rapidly induced by the stimulation with cytokines. We identified ADAM10 and ADAM17 as being responsible for the cytokine-induced shedding of CXCL16. Notably, targeting ADAM10 and ADAM17 in hMCs decreased the chemotaxis of T-Jurkat cells, whereas the inhibition of CXCL16 had no significant influence. This suggests that both proteases are important players in the recruitment of immune cells into the glomerulus, but other substrates than CXCL16 are involved in this process. Finally, we could show that the inhibition of CXCL16, ADAM10, and ADAM17 led to a strong reduction of cell proliferation and migration of hMCs. This finding could be important to develop novel diagnostic and therapeutic strategies to treat mesangial proliferative kidney diseases.  相似文献   
102.
We studied the fluorescence resonance energy transfer (FRET) efficiency of different donor-acceptor labeled model DNA systems in aqueous solution from ensemble measurements and at the single molecule level. The donor dyes: tetramethylrhodamine (TMR); rhodamine 6G (R6G); and a carbocyanine dye (Cy3) were covalently attached to the 5'-end of a 40-mer model oligonucleotide. The acceptor dyes, a carbocyanine dye (Cy5), and a rhodamine derivative (JA133) were attached at modified thymidine bases in the complementary DNA strand with donor-acceptor distances of 5, 15, 25 and 35 DNA-bases, respectively. Anisotropy measurements demonstrate that none of the dyes can be observed as a free rotor; especially in the 5-bp constructs the dyes exhibit relatively high anisotropy values. Nevertheless, the dyes change their conformation with respect to the oligonucleotide on a slower time scale in the millisecond range. This results in a dynamic inhomogeneous distribution of donor/acceptor (D/A) distances and orientations. FRET efficiencies have been calculated from donor and acceptor fluorescence intensity as well as from time-resolved fluorescence measurements of the donor fluorescence decay. Dependent on the D/A pair and distance, additional strong fluorescence quenching of the donor is observed, which simulates lower FRET efficiencies at short distances and higher efficiencies at longer distances. On the other hand, spFRET measurements revealed subpopulations that exhibit the expected FRET efficiency, even at short D/A distances. In addition, the measured acceptor fluorescence intensities and lifetimes also partly show fluorescence quenching effects independent of the excitation wavelength, i.e. either directly excited or via FRET. These effects strongly depend on the D/A distance and the dyes used, respectively. The obtained data demonstrate that besides dimerization at short D/A distances, an electron transfer process between the acceptor Cy5 and rhodamine donors has to be taken into account. To explain deviations from FRET theory even at larger D/A distances, we suggest that the pi-stack of the DNA double helix mediates electron transfer from the donor to the acceptor, even over distances as long as 35 base pairs. Our data show that FRET experiments at the single molecule level are rather suited to resolve fluorescent subpopulations in heterogeneous mixture, information about strongly quenched subpopulations gets lost.  相似文献   
103.

Introduction

The repair capability of traumatized articular cartilage is highly limited so that joint injuries often lead to osteoarthritis. Migratory chondrogenic progenitor cells (CPC) might represent a target cell population for in situ regeneration. This study aims to clarify, whether 1) CPC are present in regions of macroscopically intact cartilage from human osteoarthritic joints, 2) CPC migration is stimulated by single growth factors and the cocktail of factors released from traumatized cartilage and 3) CPC migration is influenced by cytokines present in traumatized joints.

Methods

We characterized the cells growing out from macroscopically intact human osteoarthritic cartilage using a panel of positive and negative surface markers and analyzed their differentiation capacity. The migratory response to platelet-derived growth factor (PDGF)-BB, insulin-like growth factor 1 (IGF-1), supernatants obtained from in vitro traumatized cartilage and interleukin-1 beta (IL-1β) as well as tumor necrosis factor alpha (TNF-α) were tested with a modified Boyden chamber assay. The influence of IL-1β and TNF-α was additionally examined by scratch assays and outgrowth experiments.

Results

A comparison of 25 quadruplicate marker combinations in CPC and bone-marrow derived mesenchymal stromal cells showed a similar expression profile. CPC cultures had the potential for adipogenic, osteogenic and chondrogenic differentiation. PDGF-BB and IGF-1, such as the supernatant from traumatized cartilage, induced a significant site-directed migratory response. IL-1β and TNF-α significantly reduced basal cell migration and abrogated the stimulative effect of the growth factors and the trauma supernatant. Both cytokines also inhibited cell migration in the scratch assay and primary outgrowth of CPC from cartilage tissue. In contrast, the cytokine IL-6, which is present in trauma supernatant, did not affect growth factor induced migration of CPC.

Conclusion

These results indicate that traumatized cartilage releases chemoattractive factors for CPC but IL-1β and TNF-α inhibit their migratory activity which might contribute to the low regenerative potential of cartilage in vivo.  相似文献   
104.
Honey bee pollination is a key ecosystem service to nature and agriculture. However, biosafety research on genetically modified crops rarely considers effects on nurse bees from intact colonies, even though they receive and primarily process the largest amount of pollen. The objective of this study was to analyze the response of nurse bees and their gut bacteria to pollen from Bt maize expressing three different insecticidal Cry proteins (Cry1A.105, Cry2Ab2, and Cry3Bb1). Naturally Cry proteins are produced by bacteria (Bacillus thuringiensis). Colonies of Apis mellifera carnica were kept during anthesis in flight cages on field plots with the Bt maize, two different conventionally bred maize varieties, and without cages, 1-km outside of the experimental maize field to allow ad libitum foraging to mixed pollen sources. During their 10-days life span, the consumption of Bt maize pollen had no effect on their survival rate, body weight and rates of pollen digestion compared to the conventional maize varieties. As indicated by ELISA-quantification of Cry1A.105 and Cry3Bb1, more than 98% of the recombinant proteins were degraded. Bacterial population sizes in the gut were not affected by the genetic modification. Bt-maize, conventional varieties and mixed pollen sources selected for significantly different bacterial communities which were, however, composed of the same dominant members, including Proteobacteria in the midgut and Lactobacillus sp. and Bifidobacterium sp. in the hindgut. Surprisingly, Cry proteins from natural sources, most likely B. thuringiensis, were detected in bees with no exposure to Bt maize. The natural occurrence of Cry proteins and the lack of detectable effects on nurse bees and their gut bacteria give no indication for harmful effects of this Bt maize on nurse honey bees.  相似文献   
105.
106.
The main step in the pathogenesis of transmissible spongiform encephalopathies (TSE) is the conformational change of the normal cellular prion protein (PrP(C)) into the abnormal isoform, named prion (PrP(Sc)). Since PrP is a highly conserved protein, the production of monoclonal antibodies (mAbs) of high specificity and affinity to PrP is a difficult task. In the present study we show that it is possible to overcome the unresponsiveness of the immune system by immunizing wild-type BALB/c mice with a 13 amino acid PrP peptide from the C-terminal part of PrP, bound to the keyhole limpet hemocyanin (KLH). Immunization induced predominantly anti-PrP(Sc) humoral immune response. Furthermore, we were able to obtain a panel of mAbs of IgG class specific for different non-self-conformations of PrP, with anti-PrP(Sc)-specific mAbs being the most abundant.  相似文献   
107.
108.
Aggregation, incorrect folding and low stability are common obstacles for protein structure determination, and are often discovered at a very late state of protein production. In many cases, however, the reasons for failure to obtain diffracting crystals remain entirely unknown. We report on the contribution of systematic biophysical characterization to the success in structural determination of human proteins of unknown fold. Routine analysis using dynamic light scattering (DLS), differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR) was employed to evaluate fold and stability of 263 purified protein samples (98 different human proteins). We found that FTIR-monitored temperature scanning may be used to detect incorrect folding and discovered a positive correlation between unfolding enthalpy measured with DSC and the size of small, globular proteins that may be used to estimate the quality of protein preparations. Furthermore, our work establishes that the risk of aggregation during concentration of proteins may be reduced through DLS monitoring. In summary, our study demonstrates that biophysical characterization provides an ideal tool to facilitate quality management for structural biology and many other areas of biological research.  相似文献   
109.
Hypothermia is a severe, unpleasant side effect during general anesthesia. Thus, temperature surveillance is a prerequisite in general anesthesia settings during experimental surgeries. The gold standard to measure the core body temperature (Tcore) is placement of a Swan-Ganz catheter in the pulmonary artery, which is a highly invasive procedure. Therefore, Tcore is commonly examined in the urine bladder and rectum. However, these procedures are known for their inaccuracy and delayed record of temperatures. Zero-heat-flux (ZHF) thermometry is an alternative, non-invasive method quantifying Tcore in human patients by applying a thermosensoric patch to the lateral forehead. Since the porcine cranial anatomy is different to the human’s, the optimal location of the patch remains unclear to date. The aim was to compare three different patch locations of ZHF thermometry in a porcine hypothermia model. Hypothermia (33.0°C Tcore) was conducted in 11 anesthetized female pigs (26-30kg). Tcore was measured continuously by an invasive Swan-Ganz catheter in the pulmonary artery (Tpulm). A ZHF thermometry device was mounted on three different defined locations. The smallest average difference between Tpulm and TZHF during stable temperatures was 0.21 ± 0.16°C at location A, where the patch was placed directly behind the eye. Also during rapidly changing temperatures location A showed the smallest bias with 0.48 ± 0.29°C. Location A provided the most reliable data for Tcore. Therefore, the ZHF thermometry patch should be placed directly behind the left temporal corner of the eye to provide a non-invasive method for accurate measurement of Tcore in pigs.  相似文献   
110.

Introduction

Biomarkers indicating trait, progression and prediction of pathology and symptoms in Parkinson''s disease (PD) often lack specificity or reliability. Investigating biomarker variance between individuals and over time and the effect of confounding factors is essential for the evaluation of biomarkers in PD, such as insulin-like growth factor 1 (IGF-1).

Materials and Methods

IGF-1 serum levels were investigated in up to 8 biannual visits in 37 PD patients and 22 healthy controls (HC) in the longitudinal MODEP study. IGF-1 baseline levels and annual changes in IGF-1 were compared between PD patients and HC while accounting for baseline disease duration (19 early stage: ≤3.5 years; 18 moderate stage: >4 years), age, sex, body mass index (BMI) and common medical factors putatively modulating IGF-1. In addition, associations of baseline IGF-1 with annual changes of motor, cognitive and depressive symptoms and medication dose were investigated.

Results

PD patients in moderate (130±26 ng/mL; p = .004), but not early stages (115±19, p>.1), showed significantly increased baseline IGF-1 levels compared with HC (106±24 ng/mL; p = .017). Age had a significant negative correlation with IGF-1 levels in HC (r = -.47, p = .028) and no correlation in PD patients (r = -.06, p>.1). BMI was negatively correlated in the overall group (r = -.28, p = .034). The annual changes in IGF-1 did not differ significantly between groups and were not correlated with disease duration. Baseline IGF-1 levels were not associated with annual changes of clinical parameters.

Discussion

Elevated IGF-1 in serum might differentiate between patients in moderate PD stages and HC. However, the value of serum IGF-1 as a trait-, progression- and prediction marker in PD is limited as IGF-1 showed large inter- and intraindividual variability and may be modulated by several confounders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号