首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5321篇
  免费   425篇
  国内免费   1篇
  5747篇
  2024年   5篇
  2023年   31篇
  2022年   68篇
  2021年   139篇
  2020年   77篇
  2019年   97篇
  2018年   142篇
  2017年   107篇
  2016年   190篇
  2015年   271篇
  2014年   281篇
  2013年   390篇
  2012年   442篇
  2011年   484篇
  2010年   293篇
  2009年   258篇
  2008年   306篇
  2007年   353篇
  2006年   293篇
  2005年   264篇
  2004年   262篇
  2003年   245篇
  2002年   200篇
  2001年   45篇
  2000年   36篇
  1999年   43篇
  1998年   53篇
  1997年   40篇
  1996年   43篇
  1995年   31篇
  1994年   26篇
  1993年   18篇
  1992年   22篇
  1991年   19篇
  1990年   23篇
  1989年   15篇
  1988年   12篇
  1987年   6篇
  1985年   7篇
  1984年   8篇
  1983年   9篇
  1982年   8篇
  1981年   9篇
  1978年   6篇
  1976年   5篇
  1973年   6篇
  1972年   4篇
  1971年   8篇
  1969年   5篇
  1935年   4篇
排序方式: 共有5747条查询结果,搜索用时 15 毫秒
61.
62.
Ovule primordia formation is a complex developmental process with a strong impact on the production of seeds. In Arabidopsis this process is controlled by a gene network, including components of the signalling pathways of auxin, brassinosteroids (BRs) and cytokinins. Recently, we have shown that gibberellins (GAs) also play an important role in ovule primordia initiation, inhibiting ovule formation in both Arabidopsis and tomato. Here we reveal that BRs also participate in the control of ovule initiation in tomato, by promoting an increase on ovule primordia formation. Moreover, molecular and genetic analyses of the co‐regulation by GAs and BRs of the control of ovule initiation indicate that two different mechanisms occur in tomato and Arabidopsis. In tomato, GAs act downstream of BRs. BRs regulate ovule number through the downregulation of GA biosynthesis, which provokes stabilization of DELLA proteins that will finally promote ovule primordia initiation. In contrast, in Arabidopsis both GAs and BRs regulate ovule number independently of the activity levels of the other hormone. Taken together, our data strongly suggest that different molecular mechanisms could operate in different plant species to regulate identical developmental processes even, as for ovule primordia initiation, if the same set of hormones trigger similar responses, adding a new level of complexity.  相似文献   
63.
Aerobic anoxygenic phototrophic (AAP) bacteria are a phylogenetically diverse and ubiquitous group of prokaryotes that use organic matter but can harvest light using bacteriochlorophyll a. Although the factors regulating AAP ecology have long been investigated through field surveys, the few available experimental studies have considered AAPs as a group, thus disregarding the potential differential responses between taxonomically distinct AAP assemblages. Here, we used sequencing of the pufM gene to describe the diversity of AAPs in 10 environmentally distinct temperate lakes, and to investigate the taxonomic responses of AAP communities in these lakes when subjected to similar experimental manipulations of light and predator removal. The studied communities were clearly dominated by Limnohabitans AAP but presented a clear taxonomic segregation between lakes presumably driven by local conditions, which was maintained after experimental manipulations. Predation reduction (but not light exposure) caused significant compositional shifts across most assemblages, but the magnitude of these changes could not be clearly related to changes in bulk AAP abundances or taxonomic richness of AAP assemblages during experiments. Only a few operational taxonomic units, which differed taxonomically between lakes, were found to respond positively during experimental treatments. Our results highlight that different freshwater AAP communities respond differently to similar control mechanisms, highlighting that in‐depth knowledge on AAP diversity is essential to understand the ecology and potential role of these photoheterotrophs.  相似文献   
64.
65.
66.
Many deep-water fish populations, being K-selected species, have little resilience to overexploitation and may be at serious risk of depletion as a consequence. Sea warming represents an additional threat. In this study, the condition, or health, of several populations of common ling (Molva molva), blue ling (Molva dypterygia) and Mediterranean or Spanish ling (Molva macrophthalma) inhabiting different areas in the North Atlantic and the Mediterranean was evaluated, to shed light on the challenges these deep-water species are facing in the context of fishing activity and a warming climate. The data on the condition of Molva populations which are analysed here have been complemented with data on abundance and, for the southernmost species (Mediterranean ling), with two other health indicators (parasitism and hepato-somatic index). Despite some exceptions (e.g., common ling in Icelandic waters), this study shows that the condition of many populations of Molva species in the northeastern Atlantic and the Mediterranean Sea has worsened, a trend which, in recent decades, has usually been found to be accompanied by a decline in their abundance. In addition, the poor health status of most populations of common ling, blue ling and Mediterranean ling considered in this analysis points to a lower sustainability of these populations in the future. Overall, the health status and abundance of Molva populations in the northeastern Atlantic and the Mediterranean suggest that only some populations located in the North Atlantic may be able to rebuild, whereas the populations in southern North Atlantic and the Mediterranean, which are probably most at risk from sea warming, are facing serious difficulties in doing so. In the context of fisheries and global warming, this study's results strongly indicate that management bodies need to consider the health status of many of the populations of Molva species, particularly in southern European waters, before implementing their decisions.  相似文献   
67.
68.
69.
Wide-range geographically discontinuous distributions have long intrigued scientists. We explore the role of ecology, geology, and dispersal in the formation of these large-scale disjunctions, using the angiosperm tribe Putorieae (Rubiaceae) as a case study. From DNA sequences of nuclear ITS and six plastid markers, we inferred a phylogeny with 65% of all known Putorieae species. Divergence times, ancestral ranges, and diversification rate shifts were then estimated using Bayesian inference. We further explored species climatic tolerances and performed ancestral niche reconstruction to discriminate among alternative speciation modes, including geographical and ecological vicariance, and ecogeographical, ecological, and dispersal-mediated speciation. As a result, we identified seven major clades in Putorieae, some of which exhibit striking geographical disjunctions, matching the Rand Flora pattern, with sister species in the Canary Islands andeastern and southern Africa. Initial diversification within the tribe occurred in the early Miocene, coincident with a period of climate warming; however, most clades diverged within the last 10 Myr. Aridification and high extinction rates, coupled with ecological vicariance, explain the oldest disjunctions. Adaptation to new environmental conditions, after allopatry, is observed in several clades. Dispersal, either long-distance or via corridors made available by mountain uplift, is behind the most recent disjunctions. Some of these events were followed by ecological speciation and rapid diversification, with species becoming adapted to xeric or increasingly colder continental climates. We show that an integrative approach may help discriminate among speciation modes invoked to explain disjunctions at macroevolutionary time scales, even when extinction has erased the signature of past events.  相似文献   
70.
Prokaryotic laccases are emergent biocatalysts. However, they have not been broadly found and characterized in bacterial organisms, especially in lactic acid bacteria. Recently, a prokaryotic laccase from the lactic acid bacterium Pediococcus acidilactici 5930, which can degrade biogenic amines, was discovered. Thus, our study aimed to shed light on laccases from lactic acid bacteria focusing on two Pediococcus laccases, P. acidilactici 5930 and Pediococcus pentosaceus 4816, which have provided valuable information on their biochemical activities on redox mediators and biogenic amines. Both laccases are able to oxidize canonical substrates as ABTS, ferrocyanide and 2,6-DMP, and non-conventional substrates as biogenic amines. With ABTS as a substrate, they prefer an acidic environment and show sigmoidal kinetic activity, and are rather thermostable. Moreover, this study has provided the first structural view of two lactic acid bacteria laccases, revealing new structural features not seen before in other well-studied laccases, but which seem characteristic for this group of bacteria. We believe that understanding the role of laccases in lactic acid bacteria will have an impact on their biotechnological applications and provide a framework for the development of engineered lactic acid bacteria with enhanced properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号