首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   549篇
  免费   49篇
  598篇
  2022年   5篇
  2021年   6篇
  2020年   6篇
  2019年   7篇
  2016年   7篇
  2015年   10篇
  2014年   16篇
  2013年   12篇
  2012年   17篇
  2011年   21篇
  2010年   18篇
  2009年   18篇
  2008年   11篇
  2007年   11篇
  2006年   15篇
  2005年   16篇
  2004年   12篇
  2003年   22篇
  2002年   11篇
  2001年   10篇
  2000年   12篇
  1999年   23篇
  1997年   6篇
  1996年   6篇
  1995年   5篇
  1993年   6篇
  1992年   9篇
  1991年   10篇
  1990年   17篇
  1989年   18篇
  1988年   9篇
  1987年   13篇
  1986年   15篇
  1985年   7篇
  1984年   19篇
  1983年   13篇
  1982年   16篇
  1980年   10篇
  1979年   5篇
  1978年   12篇
  1977年   10篇
  1976年   7篇
  1975年   12篇
  1974年   6篇
  1973年   9篇
  1972年   7篇
  1971年   7篇
  1969年   8篇
  1968年   10篇
  1966年   4篇
排序方式: 共有598条查询结果,搜索用时 0 毫秒
151.
Wagner W  Fodor E  Ginsburg A  Hammer JA 《Biochemistry》2006,45(38):11564-11577
The myosin Va light chain DYNLL2 has been proposed to function as an adaptor to link the myosin to certain cargo. Here, we mapped the binding site for DYNLL2 within the myosin Va heavy chain. Copurification and pull-down experiments showed that the heavy chain contains a single DYNLL2 binding site and that this site resides within a discontinuity in the myosin's central coiled-coil domain. Importantly, exon B, an alternatively spliced, three-amino acid exon, is a part of this binding site, and we show in the context of full-length myosin Va that this exon is required for DYNLL2-myosin Va interaction. We investigated the effect of DYNLL2 binding on the structure of a myosin Va heavy chain fragment that contains the DYNLL2 binding site and flanking sequence, only parts of which are strongly predicted to form a coiled coil. Circular dichroism measurements revealed a DYNLL2-induced change in the secondary structure of this dimeric myosin fragment that is consistent with an increase in alpha-helical coiled-coil content. Moreover, the binding of DYNLL2 considerably stabilizes this heavy chain fragment against thermal denaturation. Analytical ultracentrifugation yielded an apparent association constant of approximately 3 x 10(6) M(-1) for the interaction of DYNLL2 with the dimeric myosin fragment. Together, these data show that alternative splicing of the myosin Va heavy chain controls DYNLL2-myosin Va interaction and that DYNLL2 binding alters the structure of a portion of the myosin's coiled-coil domain. These results suggest that exon B could have a significant impact on the conformation and regulatory folding of native myosin Va, as well as on its interaction with certain cargos.  相似文献   
152.
The metabolic inter-relationships between malarial parasites and their host erythrocytes are poorly understood. They have been investigated hitherto mostly by observing parasite behavior in erythrocyte variants, in metabolically altered erythrocytes, or in cell-free in vitro systems. We have studied the interconnection between the bioenergetic metabolism of host and parasite through compartment analysis of ATP in Plasmodium falciparum-infected human red blood cells, using Sendai virus-induced host cell lysis. ATP concentrations in host and parasite compartments were found to be equal. Inhibitors of mitochondrial activity reduce ATP levels to a similar extent in host and parasite compartments, although only the parasite contains functional mitochondria. It is shown that equalization of ATP levels is brought about by means of an adenylate translocator, probably localized at the parasite plasma membrane, in conjunction with adenylate kinase activity detected both in host and parasite compartments. The translocator is inhibited by compounds which are known to inhibit specifically the translocator of the inner membrane of mammalian mitochondria, with identical inhibitory constants. Addition of these inhibitors to intact infected cells causes a rapid depletion of ATP in the host compartment and a parallel increase in the parasite, suggesting that the parasite supplies ATP to its host cell rather than the reverse.  相似文献   
153.
Antistasin, a 15-kDa salivary protein from the Mexican leech Haementeria officinalis, inhibits both blood coagulation and the metastasis of tumors (Tuszynski, G. P., Gasic, T. B., and Gasic, G. J. (1987) J. Biol. Chem. 262, 9718-9723). Antistasin binds to heparin-agarose, suggesting the protein interacts with sulfated glycoconjugates. The specificity of the interaction between antistasin and heparin was tested by measuring the binding of antistasin to various lipids and by comparing the ability of several charged glycoconjugates to inhibit binding. Of the lipids tested, antistasin binds with high affinity only to sulfatide (Gal(3-SO4)beta 1-1Cer) and does not bind to comparable levels of phospholipids, neutral glycosphingolipids, gangliosides, or cholesterol-3-SO4. The binding of antistasin to sulfatide is inhibited by dextran sulfate, fucoidan, and heparin, with I50 values of 1.5, 9.2, and 16 micrograms/ml, respectively. Comparable levels of chondroitin sulfates A, B, C, keratan sulfate, or hyaluronic acid do not inhibit binding. Comparisons of the amino acid sequences of antistasin and other sulfatide or heparin-binding proteins revealed a region of homology, based around the sequence Cys-Ser-Val-Thr-Cys-Gly-X-Gly-X-X-X-Arg-X-Arg, which may be a sulfated glycoconjugate binding domain. In addition, homologies were found with the alternate complement pathway protein properdin and coat proteins from malaria circumsporozoites and Herpes simplex I.  相似文献   
154.
In response to recent advice from the US National Cancer Institute concerning the use of systemic adjuvant therapy for node-negative breast cancer we reviewed the literature and found that several studies have shown evidence of a disease-free, but not an overall, survival advantage for treated patients. The benefits have been modest and may not outweight the cost and toxic effects of such therapy. Routine use does not seem to be justified. Factors must be identified to differentiate between patients at low risk and those at high risk. It should then be determined if adjuvant therapy is truly beneficial in those who are at high risk.  相似文献   
155.
Ferriprotoporphyrin IX (FP) is released inside the food vacuole of the malaria parasite during the digestion of host cell hemoglobin. FP is detoxified by its biomineralization to hemozoin. This process is effectively inhibited by chloroquine (CQ) and amodiaquine (AQ). Undegraded FP accumulates in the membrane fraction and inhibits enzymes of infected cells in parallel with parasite killing. FP is demonstrably degraded by reduced glutathione (GSH) in a radical-mediated mechanism. This degradation is inhibited by CQ and AQ in a competitive manner, thus explaining the ability of increased GSH levels in Plasmodium falciparum-infected cells to increase resistance to CQ and vice versa, and to render Plasmodium berghei that were selected for CQ resistance in vivo sensitive to the CQ when glutathione synthesis is inhibited. Some over-the-counter drugs that are known to reduce GSH in body tissues when used in excess were found to enhance the antimalarial action of CQ and AQ in mice infected either with P. berghei or Plasmodium vinckei. In contrast, N-acetyl-cysteine which is expected to increase the cellular levels of GSH, antagonized the action of CQ. These results suggest that some over-the-counter drugs can be used in combination with some antimalarials to which the parasite has become resistant.  相似文献   
156.
157.
Ginsburg H  Golenser J 《Parassitologia》1999,41(1-3):309-311
Experiments in glucose-6-phosphate dehydrogenase (G6PD) deficient erythrocytes parasitized by Plasmodium falciparum proved that depletion of glutathione increased fluxes of reactive oxygen species and was detrimental to the parasite at various sites and developmental stages. Chloroquine is also considered an inducer of oxidant damage due to its role in preventing heme polymerization. Recently it has been found that GSH prevents cellular damage by degrading the toxic heme. Consequently, we suggest that the use of combinations of chloroquine and depletors of GSH would be highly efficient for the chemotherapy of malaria.  相似文献   
158.
Microbial spoilage of food causes losses of up to 40% of all food grown for human consumption worldwide. Yeast growth is a major factor in the spoilage of foods and beverages that are characterized by a high sugar content, low pH, and low water activity, and it is a significant economic problem. While growth of spoilage yeasts such as Zygosaccharomyces bailii and Saccharomyces cerevisiae can usually be retarded by weak organic acid preservatives, the inhibition often requires levels of preservative that are near or greater than the legal limits. We identified a novel synergistic effect of the chemical preservative benzoic acid and nitrogen starvation: while exposure of S. cerevisiae to either benzoic acid or nitrogen starvation is cytostatic under our conditions, the combination of the two treatments is cytocidal and can therefore be used beneficially in food preservation. In yeast, as in all eukaryotic organisms, survival under nitrogen starvation conditions requires a cellular response called macroautophagy. During macroautophagy, cytosolic material is sequestered by intracellular membranes. This material is then targeted for lysosomal degradation and recycled into molecular building blocks, such as amino acids and nucleotides. Macroautophagy is thought to allow cellular physiology to continue in the absence of external resources. Our analyses of the effects of benzoic acid on intracellular membrane trafficking revealed that there was specific inhibition of macroautophagy. The data suggest that the synergism between nitrogen starvation and benzoic acid is the result of inhibition of macroautophagy by benzoic acid and that a mechanistic understanding of this inhibition should be beneficial in the development of novel food preservation technologies.  相似文献   
159.
Docking of a vesicle at the appropriate target membrane involves an interaction between integral membrane proteins located on the vesicle (v-SNAREs) and those located on the target membrane (t-SNAREs). GATE-16 (Golgi-associated ATPase enhancer of 16 kDa) was shown to modulate the activity of SNAREs in the Golgi apparatus and is therefore an essential component of intra-Golgi transport and post-mitotic Golgi re-assembly. GATE-16 contains a ubiquitin fold subdomain, which is terminated at the carboxyl end by an additional amino acid after a conserved glycine residue. In the present study we tested whether the COOH terminus of GATE-16 undergoes post-translational cleavage by a protease which exposes the glycine 116 residue. We describe the isolation and characterization of HsApg4A as a human protease of GATE-16. We show that GATE-16 undergoes COOH-terminal cleavage both in vivo and in vitro, only when the conserved glycine 116 is present. We then utilize an in vitro assay to show that pure HsApg4A is sufficient to cleave GATE-16. The characterization of this protease may give new insights into the mechanism of action of GATE-16 and its other family members.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号