首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   794篇
  免费   66篇
  国内免费   1篇
  2023年   3篇
  2022年   4篇
  2021年   22篇
  2020年   11篇
  2019年   12篇
  2018年   8篇
  2017年   7篇
  2016年   22篇
  2015年   22篇
  2014年   28篇
  2013年   66篇
  2012年   33篇
  2011年   35篇
  2010年   27篇
  2009年   18篇
  2008年   46篇
  2007年   35篇
  2006年   55篇
  2005年   50篇
  2004年   47篇
  2003年   40篇
  2002年   34篇
  2001年   26篇
  2000年   24篇
  1999年   22篇
  1998年   17篇
  1997年   9篇
  1996年   5篇
  1995年   10篇
  1994年   14篇
  1992年   8篇
  1991年   7篇
  1990年   11篇
  1989年   10篇
  1988年   9篇
  1987年   4篇
  1986年   6篇
  1984年   5篇
  1983年   5篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1979年   6篇
  1978年   6篇
  1977年   3篇
  1975年   3篇
  1974年   4篇
  1973年   4篇
  1971年   2篇
  1966年   2篇
排序方式: 共有861条查询结果,搜索用时 15 毫秒
131.
Cancer-associated fibroblasts (CAFs) have important roles in promoting cancer development and progression. We previously reported that high expression of sex-determining region Y (SRY)-box9 (SOX9) in oral squamous cell carcinoma (OSCC) cells was positively correlated with poor prognosis. This study developed three-dimensional (3D) in vitro models co-cultured with OSCC cells and CAFs to examine CAF-mediated cancer migration and invasion in vitro and in vivo. Moreover, we performed an immunohistochemical analysis of alpha-smooth muscle actin and SOX9 expression in surgical specimens from 65 OSCC patients. The results indicated that CAFs promote cancer migration and invasion in migration assays and 3D in vitro models. The invading OSCC cells exhibited significant SOX9 expression and changes in the expression of epithelial–mesenchymal transition (EMT) markers, suggesting that SOX9 promotes EMT. TGF-β1 signalling inhibition reduced SOX9 expression and cancer invasion in vitro and in vivo, indicating that TGF-β1-mediated invasion is dependent on SOX9. In surgical specimens, the presence of CAFs was correlated with SOX9 expression in the invasive cancer nests and had a significant impact on regional recurrence. These findings demonstrate that CAFs promote cancer migration and invasion via the TGF-β/SOX9 axis.  相似文献   
132.
133.
Thy-1 glycoprotein is expressed in rat glomerular mesangial cells, and anti-Thy-1 nephritis induced by anti-Thy-1 antibodies is a model of human renal diseases. In this study, we examined Thy-1-mediated biological reactions in cultured rat glomerular mesangial cells utilizing two anti-Thy-1 monoclonal antibodies (mAbs), 1-22-3 and OX-7. Incubation of the cells with these mAbs resulted in increased inositol trisphosphate (IP3) levels. The rise in IP3 produced by mAb 1-22-3 was greater than that produced by mAb OX-7 at the same dose. Incubation of mesangial cells with these mAbs resulted in an increase in the intracellular free calcium concentration ([Ca2+]i). mAb 1-22-3 induced a sustained increase in [Ca2+]i, while that induced by mAb OX-7 lasted 1-2 min, then decreased to the basal level. An transient increase in [Ca2+]i was also observed in Ca2+-free medium, indicating that these [Ca2+]i increases are due to release of Ca2+ from internal stores by IP3 without calcium flux across cell membrane. When cells were pretreated with protein tyrosine kinase (PTK) inhibitors (herbimycin A or genistein), Thy-1-mediated increases in [Ca2+]i were inhibited. These data suggest that Thy-1 induces the production of IP3 (including inositol 1,4,5-triphosphate, an intracellular Ca2+-releasing factor) and that PTKs may contribute to the Thy-1-mediated elevation of [Ca2+]i which presumably results from phospholipase C activation following Thy-1-mediated signaling in rat mesangial cells. © 1996 Wiley-Liss, Inc.  相似文献   
134.
Cell polarity determines the direction of cell growth in bacteria. MreB actin spatially regulates peptidoglycan synthesis to enable cells to elongate bidirectionally. MreB densely localizes in the cylindrical part of the rod cell and not in polar regions in Escherichia coli. When treated with A22, which inhibits MreB polymerization, rod‐shaped cells became round and MreB was diffusely distributed throughout the cytoplasmic membrane. A22 removal resulted in restoration of the rod shape. Initially, diffuse MreB started to re‐assemble, and MreB‐free zones were subsequently observed in the cytoplasmic membrane. These MreB‐free zones finally became cell poles, allowing the cells to elongate bidirectionally. When MreB was artificially located at the cell poles, an additional pole was created, indicating that artificial localization of MreB at the cell pole induced local peptidoglycan synthesis. It was found that the anionic phospholipids (aPLs), phosphatidylglycerol and cardiolipin, which were enriched in cell poles preferentially interact with monomeric MreB compared with assembled MreB in vitro. MreB tended to localize to cell poles in cells lacking both aPLs, resulting in production of Y‐shaped cells. Their findings indicated that aPLs exclude assembled MreB from cell poles to establish cell polarity, thereby allowing cells to elongate in a particular direction.  相似文献   
135.
BACKGROUND: Although gene therapy using plasmid vectors is thought to be safer compared with viral vectors, poor efficacy of gene transfer is the obstacle preventing wide application of plasmid vectors. However, high levels of foreign gene expression have been achieved by rapid tail vein injection of a large volume of a plasmid DNA solution into rats. Using this technique, we examined the effect of rat CTLA4-Ig gene transfer on prevention of cardiac allograft rejection in this animal model. METHODS: Recipient Lewis rats were injected with either plasmid pCAGGS-CTLA4-Ig-Glu-tag as a treatment vector or plasmid pCAGGS-signal peptide (SP)-Ig as a control vector by hydrodynamics-based delivery technique on the day before heart transplantation. Hearts from Brown Norway donors were transplanted into the neck of Lewis recipients and graft survival was assessed. RESULTS: The plasma level of CTLA4-Ig reached a peak of nearly 5 microg/mL 1 day after injection, and then slowly decreased but still remained above 0.9 microg/mL until 100 days after injection. The recipient rats treated with the control vector and untreated rats rejected cardiac allografts within 7 days. On the other hand, the median survival time of the grafts treated with pCAGGS-CTLA4Ig-Glu-tag was more than 100 days. Histological examination revealed that long-term survival allografts contained fewer infiltrating lymphocytes. The serum from recipients with long-term survival allograft suppressed allogenic mixed lymphocyte reaction. CONCLUSIONS: CTLA4-Ig gene transfer by means of tail vein injection of plasmid DNA into a recipient rat resulted in remarkable prolongation of cardiac allograft survival with persistent plasma level of CTLA4-Ig protein.  相似文献   
136.
137.
Maltohexaose-producing amylase (G6-amylase) from alkalophilic Bacillus sp.707 predominantly produces maltohexaose (G6) in the yield of >30% of the total products from short-chain amylose (DP=17). Our previous crystallographic study showed that G6-amylase has nine subsites, from -6 to +3, and pointed out the importance of the indole moiety of Trp140 in G6 production. G6-amylase has very low levels of hydrolytic activities for oligosaccharides shorter than maltoheptaose. To elucidate the mechanism underlying G6 production, we determined the crystal structures of the G6-amylase complexes with G6 and maltopentaose (G5). In the active site of the G6-amylase/G5 complex, G5 is bound to subsites -6 to -2, while G1 and G6 are found at subsites +2 and -7 to -2, respectively, in the G6-amylase/G6 complex. In both structures, the glucosyl residue located at subsite -6 is stacked to the indole moiety of Trp140 within a distance of 4A. The measurement of the activities of the mutant enzymes when Trp140 was replaced by leucine (W140L) or by tyrosine (W140Y) showed that the G6 production from short-chain amylose by W140L is lower than that by W140Y or wild-type enzyme. The face-to-face short contact between Trp140 and substrate sugars is suggested to regulate the disposition of the glucosyl residue at subsite -6 and to govern product specificity for G6 production.  相似文献   
138.
A major shell matrix protein originally obtained from a freshwater snail is a molluscan homologue of Dermatopontins, a group of Metazoan proteins also called TRAMP (tyrosine-rich acidic matrix protein). We sequenced and identified 14 molluscan homologues of Dermatopontin from eight snail species belonging to the order Basommatophora and Stylommatophora. The bassommatophoran Dermatopontins fell into three types, one is suggested to be a shell matrix protein and the others are proteins having more general functions based on gene expression analyses. N-glycosylation is inferred to be important for the function involved in shell calcification, because potential N-glycosylation sites were found exclusively in the Dermatopontins considered as shell matrix proteins. The stylommatophoran Dermatopontins fell into two types, also suggested to comprise a shell matrix protein and a protein having a more general function. Phylogenetic analyses using maximum likelihood and Bayesian methods revealed that gene duplication events occurred independently in both basommatophoran and stylommatophoran lineages. These results suggest that the dermatopontin genes were co-opted for molluscan calcification at least twice independently after the divergence of basommatophoran and stylommatophoran lineages, or more recently than we have expected. [Reviewing Editor: Dr. David Pollock]  相似文献   
139.
The most intensively studied rotavirus strains initially attach to cells when the "heads" of their protruding spikes bind cell surface sialic acid. Rotavirus strains that cause disease in humans do not bind this ligand. The structure of the sialic acid binding head (the VP8* core) from the simian rotavirus strain RRV has been reported, and neutralization epitopes have been mapped onto its surface. We report here a 1.6-A resolution crystal structure of the equivalent domain from the sialic acid-independent rotavirus strain DS-1, which causes gastroenteritis in humans. Although the RRV and DS-1 VP8* cores differ functionally, they share the same galectin-like fold. Differences between the RRV and DS-1 VP8* cores in the region that corresponds to the RRV sialic acid binding site make it unlikely that DS-1 VP8* binds an alternative carbohydrate ligand in this location. In the crystals, a surface cleft on each DS-1 VP8* core binds N-terminal residues from a neighboring molecule. This cleft may function as a ligand binding site during rotavirus replication. We also report an escape mutant analysis, which allows the mapping of heterotypic neutralizing epitopes recognized by human monoclonal antibodies onto the surface of the VP8* core. The distribution of escape mutations on the DS-1 VP8* core indicates that neutralizing antibodies that recognize VP8* of human rotavirus strains may bind a conformation of the spike that differs from those observed to date.  相似文献   
140.
The autocrine motility factor (AMF) promotes cellular locomotion or invasion, and regulates tumor angiogenesis or ascites accumulation. These signals are triggered by binding between AMF and its receptor (AMFR), a glycoprotein on the cell surface. AMF has been identified as phosphohexose isomerase (PHI). Previous reports have suggested that the substrate-recognition of exo-PHI is significant for receptor binding. Crystallographic studies have shown that AMF consists of three domains, and that the substrate or inhibitor of PHI is stored between the large and small domains, corresponding to approximately residues 117-288. Here, site-directed mutagenesis was used to investigate 18 recombinant human AMF point mutants involving critical amino acid residues for substrate or enzyme inhibitor recognition or binding. Mutation of residues that interact with the phosphate group of the PHI substrate significantly reduced the cell motility-stimulating activity. Their binding capacities for AMFR were also lower than wild-type human AMF. Mutants that retained the enzymic activity showed the motility-stimulating effect and receptor binding and had sensitivity to a PHI inhibitor. Mutant AMFR lacking the N-sugar chain was expressed on the cell membrane but did not respond to AMF-stimulation, and N-glycosidase-treated AMFR did not compete with receptor binding of AMF. Furthermore, the AMF domains that contain the substrate storage domain and C-terminal region stimulate cell locomotion. These results suggest that the N-glyco side-chain of AMFR is a trigger and that interaction between the 117-C-terminal part of AMF and the extracellular core protein of AMFR is needed during AMF-AMFR interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号