全文获取类型
收费全文 | 2148篇 |
免费 | 166篇 |
国内免费 | 1篇 |
专业分类
2315篇 |
出版年
2024年 | 4篇 |
2023年 | 15篇 |
2022年 | 35篇 |
2021年 | 70篇 |
2020年 | 43篇 |
2019年 | 49篇 |
2018年 | 51篇 |
2017年 | 39篇 |
2016年 | 69篇 |
2015年 | 126篇 |
2014年 | 146篇 |
2013年 | 147篇 |
2012年 | 223篇 |
2011年 | 202篇 |
2010年 | 131篇 |
2009年 | 96篇 |
2008年 | 155篇 |
2007年 | 144篇 |
2006年 | 121篇 |
2005年 | 109篇 |
2004年 | 93篇 |
2003年 | 85篇 |
2002年 | 72篇 |
2001年 | 17篇 |
2000年 | 10篇 |
1999年 | 11篇 |
1998年 | 13篇 |
1997年 | 6篇 |
1996年 | 3篇 |
1995年 | 7篇 |
1994年 | 3篇 |
1993年 | 6篇 |
1992年 | 2篇 |
1991年 | 2篇 |
1989年 | 2篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1985年 | 1篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1979年 | 1篇 |
1976年 | 2篇 |
排序方式: 共有2315条查询结果,搜索用时 15 毫秒
1.
Jamie Alison Jake M. Alexander Nathan Diaz Zeugin Yoko L. Dupont Evelin Iseli Hjalte M. R. Mann Toke T. Hye 《Biology letters》2022,18(7)
Recent decades have seen a surge in awareness about insect pollinator declines. Social bees receive the most attention, but most flower-visiting species are lesser known, non-bee insects. Nocturnal flower visitors, e.g. moths, are especially difficult to observe and largely ignored in pollination studies. Clearly, achieving balanced monitoring of all pollinator taxa represents a major scientific challenge. Here, we use time-lapse cameras for season-wide, day-and-night pollinator surveillance of Trifolium pratense (L.; red clover) in an alpine grassland. We reveal the first evidence to suggest that moths, mainly Noctua pronuba (L.; large yellow underwing), pollinate this important wildflower and forage crop, providing 34% of visits (bumblebees: 61%). This is a remarkable finding; moths have received no recognition throughout a century of T. pratense pollinator research. We conclude that despite a non-negligible frequency and duration of nocturnal flower visits, nocturnal pollinators of T. pratense have been systematically overlooked. We further show how the relationship between visitation and seed set may only become clear after accounting for moth visits. As such, population trends in moths, as well as bees, could profoundly affect T. pratense seed yield. Ultimately, camera surveillance gives fair representation to non-bee pollinators and lays a foundation for automated monitoring of species interactions in future. 相似文献
2.
3.
4.
Jamie S. Sanderlin Nicole Lazar Michael J. Conroy Jaxk Reeves 《The Journal of wildlife management》2012,76(1):88-94
Genetic techniques are frequently used to sample and monitor wildlife populations. The goal of these studies is to maximize the ability to distinguish individuals for various genetic inference applications, a process which is often complicated by genotyping error. However, wildlife studies usually have fixed budgets, which limit the number of genetic markers available for inclusion in a study marker panel. Prior to our study, a formal algorithm for selecting a marker panel that included genotyping error, laboratory costs, and ability to distinguish individuals did not exist. We developed a constrained nonlinear programming optimization algorithm to determine the optimal number of markers for a marker panel, initially applied to a pilot study designed to estimate black bear abundance in central Georgia. We extend the algorithm to other genetic applications (e.g., parentage or population assignment) and incorporate possible null alleles. Our algorithm can be used in wildlife pilot studies to assess the feasibility of genetic sampling for multiple genetic inference applications. © 2011 The Wildlife Society. 相似文献
5.
Fragile X syndrome (FX), the most common heritable cause of mental retardation and autism, is a developmental disorder characterized by physical, cognitive, and behavioral deficits. FX results from a trinucleotide expansion mutation in the fmr1 gene that reduces levels of fragile X mental retardation protein (FMRP). Although research efforts have focused on FMRP's impact on mGluR signaling, how the loss of FMRP leads to the individual symptoms of FX is not known. Previous studies on human FX blood cells revealed alterations in the cyclic adenosine 3', 5'-monophosphate (cAMP) cascade. We tested the hypothesis that cAMP signaling is altered in the FX nervous system using three different model systems. Induced levels of cAMP in platelets and in brains of fmr1 knockout mice are substantially reduced. Cyclic AMP induction is also significantly reduced in human FX neural cells. Furthermore, cAMP production is decreased in the heads of FX Drosophila and this defect can be rescued by reintroduction of the dfmr gene. Our results indicate that a robust defect in cAMP production in FX is conserved across species and suggest that cAMP metabolism may serve as a useful biomarker in the human disease population. Reduced cAMP induction has implications for the underlying causes of FX and autism spectrum disorders. Pharmacological agents known to modulate the cAMP cascade may be therapeutic in FX patients and can be tested in these models, thus supplementing current efforts centered on mGluR signaling. 相似文献
6.
White MT Griffin JT Riley EM Drakeley CJ Moorman AM Sumba PO Kazura JW Ghani AC John CC 《Proceedings. Biological sciences / The Royal Society》2011,278(1710):1298-1305
Antibodies to the pre-erythrocytic antigens, circumsporozoite protein (CSP), thrombospondin-related adhesive protein (TRAP) and liver-stage antigen 1, have been measured in field studies of semi-immune adults and shown to correlate with protection from Plasmodium falciparum infection. A mathematical model is formulated to estimate the probability of sporozoite infection as a function of antibody titres to multiple pre-erythrocytic antigens. The variation in antibody titres from field data was used to estimate the relationship between the probability of P. falciparum infection per infectious mosquito bite and antibody titre. Using this relationship, we predict the effect of vaccinations that boost baseline CSP or TRAP antibody titres. Assuming the estimated relationship applies to vaccine-induced antibody titres, then single-component CSP or TRAP antibody-mediated pre-erythrocytic vaccines are likely to provide partial protection from infection, with vaccine efficacy of approximately 50 per cent depending on the magnitude of the vaccine-induced boost to antibody titres. It is possible that the addition of a TRAP component to a CSP-based vaccine such as RTS,S would provide an increase in infection-blocking efficacy of approximately 25 per cent should the problem of immunological interference between antigens be overcome. 相似文献
7.
8.
9.
Christian M. Paumi Matthew Chuk Jamie Snider Igor Stagljar Susan Michaelis 《Microbiology and molecular biology reviews》2009,73(4):577-593
Summary: Members of the ATP-binding cassette (ABC) transporter superfamily exist in bacteria, fungi, plants, and animals and play key roles in the efflux of xenobiotic compounds, physiological substrates, and toxic intracellular metabolites. Based on sequence relatedness, mammalian ABC proteins have been divided into seven subfamilies, ABC subfamily A (ABCA) to ABCG. This review focuses on recent advances in our understanding of ABC transporters in the model organism Saccharomyces cerevisiae. We propose a revised unified nomenclature for the six yeast ABC subfamilies to reflect the current mammalian designations ABCA to ABCG. In addition, we specifically review the well-studied yeast ABCC subfamily (formerly designated the MRP/CFTR subfamily), which includes six members (Ycf1p, Bpt1p, Ybt1p/Bat1p, Nft1p, Vmr1p, and Yor1p). We focus on Ycf1p, the best-characterized yeast ABCC transporter. Ycf1p is located in the vacuolar membrane in yeast and functions in a manner analogous to that of the human multidrug resistance-related protein (MRP1, also called ABCC1), mediating the transport of glutathione-conjugated toxic compounds. We review what is known about Ycf1p substrates, trafficking, processing, posttranslational modifications, regulation, and interactors. Finally, we discuss a powerful new yeast two-hybrid technology called integrated membrane yeast two-hybrid (iMYTH) technology, which was designed to identify interactors of membrane proteins. iMYTH technology has successfully identified novel interactors of Ycf1p and promises to be an invaluable tool in future efforts to comprehensively define the yeast ABC interactome. 相似文献
10.
Paymaan Jafar-nejad Berit Powers Armand Soriano Hien Zhao Daniel A Norris John Matson Beatrice DeBrosse-Serra Jamie Watson Padmakumar Narayanan Seung
J Chun Curt Mazur Holly Kordasiewicz Eric E Swayze Frank Rigo 《Nucleic acids research》2021,49(2):657
Antisense oligonucleotides (ASOs) have emerged as a new class of drugs to treat a wide range of diseases, including neurological indications. Spinraza, an ASO that modulates splicing of SMN2 RNA, has shown profound disease modifying effects in Spinal Muscular Atrophy (SMA) patients, energizing efforts to develop ASOs for other neurological diseases. While SMA specifically affects spinal motor neurons, other neurological diseases affect different central nervous system (CNS) regions, neuronal and non-neuronal cells. Therefore, it is important to characterize ASO distribution and activity in all major CNS structures and cell types to have a better understanding of which neurological diseases are amenable to ASO therapy. Here we present for the first time the atlas of ASO distribution and activity in the CNS of mice, rats, and non-human primates (NHP), species commonly used in preclinical therapeutic development. Following central administration of an ASO to rodents, we observe widespread distribution and target RNA reduction throughout the CNS in neurons, oligodendrocytes, astrocytes and microglia. This is also the case in NHP, despite a larger CNS volume and more complex neuroarchitecture. Our results demonstrate that ASO drugs are well suited for treating a wide range of neurological diseases for which no effective treatments are available. 相似文献