首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   463篇
  免费   26篇
  国内免费   3篇
  2023年   16篇
  2022年   27篇
  2021年   39篇
  2020年   22篇
  2019年   29篇
  2018年   29篇
  2017年   15篇
  2016年   24篇
  2015年   22篇
  2014年   29篇
  2013年   51篇
  2012年   38篇
  2011年   29篇
  2010年   21篇
  2009年   4篇
  2008年   15篇
  2007年   8篇
  2006年   8篇
  2005年   9篇
  2004年   11篇
  2003年   6篇
  2002年   7篇
  2001年   6篇
  2000年   5篇
  1999年   5篇
  1998年   1篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1992年   3篇
  1984年   1篇
  1973年   1篇
  1872年   1篇
排序方式: 共有492条查询结果,搜索用时 156 毫秒
81.
Vibrio cholerae is a noninvasive intestinal pathogen extensively studied as the causative agent of the human disease cholera. Our recent work identified MakA as a potent virulence factor of V. cholerae in both Caenorhabditis elegans and zebrafish, prompting us to investigate the potential contribution of MakA to pathogenesis also in mammalian hosts. In this study, we demonstrate that the MakA protein could induce autophagy and cytotoxicity of target cells. In addition, we observed that phosphatidic acid (PA)-mediated MakA-binding to the host cell plasma membranes promoted macropinocytosis resulting in the formation of an endomembrane-rich aggregate and vacuolation in intoxicated cells that lead to induction of autophagy and dysfunction of intracellular organelles. Moreover, we functionally characterized the molecular basis of the MakA interaction with PA and identified that the N-terminal domain of MakA is required for its binding to PA and thereby for cell toxicity. Furthermore, we observed that the ΔmakA mutant outcompeted the wild-type V. cholerae strain A1552 in the adult mouse infection model. Based on the findings revealing mechanistic insights into the dynamic process of MakA-induced autophagy and cytotoxicity we discuss the potential role played by the MakA protein during late stages of cholera infection as an anti-colonization factor.  相似文献   
82.
Bashir  Faiza  Rehman  Ateeq Ur  Szabó  Milán  Vass  Imre 《Photosynthesis research》2021,149(1-2):93-105
Photosynthesis Research - Singlet oxygen (1O2) is an important damaging agent, which is produced during illumination by the interaction of the triplet excited state pigment molecules with molecular...  相似文献   
83.
Proniosomes (PN) are the dry water-soluble carrier systems that may enhance the oral bioavailability, stability, and topical permeability of therapeutic agents. The low solubility and low oral bioavailability due to extensive first pass metabolism make Pentazocine as an ideal candidate for oral and topical sustained release delivery. The present study was aimed to formulate the PNs by quick slurry method that are converted to niosomes (liquid dispersion) by hydration, and subsequently formulated to semisolid niosomal gel. The PNs were found in spherical shape in the SEM and stable in the physicochemical and thermal analysis (FTIR, TGA, and XRD). The quick slurry method produced high recovery (>?80% yield) and better flow properties (θ?=?28.1–37.4°). After hydration, the niosomes exhibited desirable entrapment efficiency (44.45–76.23%), size (4.98–21.3 μm), and zeta potential (??9.81 to ??21.53 mV). The in vitro drug release (T100%) was extended to more than three half-lives (2–4 h) and showed good fit to Fickian diffusion indicated by Korsmeyer-Peppas model (n?=?0.136–0.365 and R2?=?0.9747–0.9954). The permeation of niosomal gel was significantly enhanced across rabbit skin compared to the pure drug-derived gel. Therefore, the PNs are found promising candidates for oral as dissolution enhancement and sustained release for oral and topical delivery of pentazocine for the management of cancer pain.  相似文献   
84.
Serine racemase (SR) is an enzyme that catalyses the synthesis of d ‐serine, an endogenous coagonist for N‐methyl‐D‐aspartate (NMDA)‐type glutamate receptor in the central nervous system. Our previous study demonstrated that SR was expressed in the epidermis of wild‐type (WT) mice but not in SR knockout (KO) mice. In addition, SR immune‐reactivity was only found in the granular and cornified layers of the epidermis in WT mice. These findings suggested that SR is involved in the differentiation of epidermal keratinocytes and the formation of the skin barrier. However, its role in skin barrier dysfunction such as atopic dermatitis (AD) remains elusive. AD is a chronic inflammatory disease of skin, and the clinical presentation of AD has been reported to be occasionally associated with psychological factors. Therefore, this study examined the content of d ‐serine in stratum corneum in AD patients and healthy controls using a tape‐stripping method. Skin samples were collected from the cheek and upper arm skin of AD patient's lesion and healthy individuals. The d ‐serine content was significantly increased in the involved skin of AD in comparison with healthy individuals. An immunohistochemical analysis also revealed an increased SR expression in the epidermis of AD patients. Furthermore, the SR expression in cultured human keratinocytes was significantly increased by the stimulation with tumour necrosis factor ‐α or macrophage migration inhibitory factor. Taken together, these findings suggest that d ‐serine expressed particularly strongly in AD lesional skin and that the SR expression in the keratinocytes is linked to inflammatory cytokines.  相似文献   
85.
Phenol is a commonly found organic pollutant in industrial wastewaters. Its ecotoxicological significance is well known and, therefore, the compound is often required to be removed prior to discharge. In this study, plant-bacterial synergism was established in floating treatment wetlands (FTWs) in an attempt to maximize the removal of phenol from contaminated water. A common wetland plant, Typha domingensis, was vegetated on a floating mat and augmented with three phenol-degrading bacterial strains, Acinetobacter lwofii ACRH76, Bacillus cereus LORH97, and Pseudomonas sp. LCRH90, to develop FTWs for the remediation of water contaminated with phenol. All of the strains are known to have phenol-reducing properties, and grow well in FTWs. Results showed that T. domingensis was able to remove a small amount of phenol from the contaminated water; however, bacterial augmentation enhanced the removal potential significantly, i.e., 0.146 g/m2/day vs. 0.166 g/m2/day, respectively. Plant biomass also increased in the presence of bacterial consortia; and inoculated bacteria displayed successful colonization/survival in the rhizosphere, root interior and shoot interior of the plant. Similarly, highest reduction in chemical oxygen demand (COD), biochemical oxygen demand (BOD5), and total organic carbon (TOC) was achieved by the combined application of plants and bacteria. The study demonstrates that the plant-bacterial synergism in a FTW may be a more effective approach for the remediation of phenol-contaminated water.  相似文献   
86.
Plasmonics - We numerically analyzed a simple and novel design of multi-broadband plasmonic absorber which consists of a planar array of thin gold square ring structures on dielectric/metal...  相似文献   
87.
Journal of Plant Growth Regulation - Chromium (Cr) is a very toxic heavy metal present in agricultural soils. Soils contaminated with Cr are the major source of Cr entrance into the food chain. The...  相似文献   
88.
89.
KRAS mutant lung cancers have long been considered as untreatable with drugs. Transforming growth factor-β-activated kinase 1 (TAK1) appears to play an anti-apoptotic role in response to multiple stresses and has been reported to be a responsive kinase that regulates cell survival in KRAS-dependent cells. In this study, in order to find a useful approach to treat KRAS mutant lung cancer, we focused on the combined effects of 5Z-7-oxozeaenol, a TAK1 inhibitor, with hyperthermia (HT) in KRAS mutant lung cancer cell line A549. Annexin V-FITC/PI assay, cell cycle analysis, and colony formation assay revealed a significant enhancement in apoptosis induced by HT treatment, when the cells were pre-incubated with 5Z-7-oxozeaenol in a dose-dependent manner. The enhanced apoptosis by 5Z-7-oxozeaenol was accompanied by a significant increase in reactive oxygen species (ROS) generation and loss of mitochondrial membrane potential (MMP). In addition, western blot showed that 5Z-7-oxozeaenol enhanced HT-induced expressions of cleaved caspase-3, cleaved caspase-8, and HSP70 and decreased HT-induced expressions of Bcl-2, p-p38, p-JNK, and LC3. Moreover, 5Z-7-oxozeaenol pre-treatment resulted in a marked elevation of intracellular calcium level which might be associated with endoplasmic reticulum (ER) stress-related pathway. Taken together, our data provides further insights of the mechanism of action of 5Z-7-oxozeaenol and HT treatment, and their potential application as a novel approache to treat patients with KRAS mutant lung cancer.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号