首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   5篇
  154篇
  2023年   8篇
  2022年   5篇
  2021年   10篇
  2020年   3篇
  2019年   4篇
  2018年   2篇
  2017年   5篇
  2016年   8篇
  2015年   10篇
  2014年   5篇
  2013年   10篇
  2012年   12篇
  2011年   7篇
  2010年   4篇
  2009年   7篇
  2008年   4篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1991年   4篇
  1990年   3篇
  1989年   3篇
  1988年   5篇
  1987年   1篇
  1981年   1篇
  1973年   2篇
  1966年   1篇
排序方式: 共有154条查询结果,搜索用时 0 毫秒
21.
22.
23.
The demands for applicable tissue-engineered scaffolds that can be used to repair load-bearing segmental bone defects (SBDs) is vital and in increasing demand. In this study, seven different combinations of 3 dimensional (3D) novel nanocomposite porous structured scaffolds were fabricated to rebuild SBDs using an extraordinary blend of cockle shells (CaCo3) nanoparticles (CCN), gelatin, dextran and dextrin to structure an ideal bone scaffold with adequate degradation rate using the Freeze Drying Method (FDM) and labeled as 5211, 5400, 6211, 6300, 7101, 7200 and 8100. The micron sized cockle shells powder obtained (75 µm) was made into nanoparticles using mechano-chemical, top-down method of nanoparticles synthesis with the presence of the surfactant BS-12 (dodecyl dimethyl bataine). The phase purity and crystallographic structures, the chemical functionality and the thermal characterization of the scaffolds’ powder were recognized using X-Ray Diffractometer (XRD), Fourier transform infrared (FTIR) spectrophotometer and Differential Scanning Calorimetry (DSC) respectively. Characterizations of the scaffolds were assessed by Scanning Electron Microscopy (SEM), Degradation Manner, Water Absorption Test, Swelling Test, Mechanical Test and Porosity Test. Top-down method produced cockle shell nanoparticles having averagely range 37.8±3–55.2±9 nm in size, which were determined using Transmission Electron Microscope (TEM). A mainly aragonite form of calcium carbonate was identified in both XRD and FTIR for all scaffolds, while the melting (Tm) and transition (Tg) temperatures were identified using DSC with the range of Tm 62.4–75.5 °C and of Tg 230.6–232.5 °C. The newly prepared scaffolds were with the following characteristics: (i) good biocompatibility and biodegradability, (ii) appropriate surface chemistry and (iii) highly porous, with interconnected pore network. Engineering analyses showed that scaffold 5211 possessed 3D interconnected homogenous porous structure with a porosity of about 49%, pore sizes ranging from 8.97 to 337 µm, mechanical strength 20.3 MPa, Young's Modulus 271±63 MPa and enzymatic degradation rate 22.7 within 14 days.  相似文献   
24.
Sasaki T  Razak NW  Kato N  Mukai Y 《Biochemistry》2012,51(13):2785-2794
Halorhodopsin is a retinal protein with a seven-transmembrane helix and acts as an inward light-driven Cl(-) pump. In this study, structural state of the solubilized halorhodopsin (NpHR) from the biomembrane of mutant strain KM-1 of Natronomonas pharaonis in nonionic detergent was investigated. A gel filtration chromatography monitored absorbances at 280 and 504 nm corresponding to the protein and a lipid soluble pigment of bacterioruberin (BR), respectively, has clearly detected an oligomer formation of the NpHRs and a complex formation between the NpHR and BR in the solubilized system. A molar ratio of NpHR:BR in the solubilized complex was close to 1:1. Further SDS-PAGE analysis of the solubilized NpHR cross-linked by 1% glutaraldehyde has revealed that the NpHR forms homotrimer in detergent system. Although this trimeric structure was stable in the presence of NaCl, it was dissociated to the monomer by the heat treatment at 45 °C in the desalted condition. The same tendency has been reported in the case of trimeric NpHR expressed heterologously on the E. coli membrane, leading to a conclusion that the change of strength of the trimeric association dependent on the ion binding is a universal feature of the NpHR. Interestingly, the trimer dissociation on the NpHR was accompanied by the complete dissociation of the BR molecule from the protein, indicated that the cavity formed by the NpHR protomers in the trimeric conformation is important for tight binding of the BR. Because the binding affinity for Cl(-) and the resistance to hydroxylamine under light illumination showed only minor differences between the NpHR in the solubilized state and that on the biomembrane, the influences of solubilization to the tertiary structure and function of the protein are thought to be minor. This NpHR-BR complex in the solubilized system has a potential to be a good model system to investigate the intermolecular interaction between the membrane protein and lipid.  相似文献   
25.
26.
Pseudomonas pseudomallei exotoxin was found to be a potent inhibitor of protein and DNA synthesis in cultured macrophages. Inhibition of DNA synthesis occurred at toxin concentrations as low as 1-2 micrograms/ml and inhibition of 3H-thymidine uptake was almost complete at concentrations of 8 micrograms/ml or more. A close correlation between cell damage and inhibition by DNA synthesis was observed. For protein synthesis, inhibition was obtained at much lower doses (0.06-2.0 micrograms/ml) of the toxin. At similar toxin concentrations, DNA synthesis was marginally affected. Further, it was shown that protein synthesis inhibition occurred almost immediately after incubation, reaching its maximal inhibitory effect of 70% after 6 hr. DNA synthesis, however, was minimally affected by a similar toxin concentration even after 10 hr of incubation. The inhibition of macromolecular synthesis in macrophages by P. pseudomallei exotoxin may be relevant to its modulatory effect on the host defense mechanism.  相似文献   
27.
A strain of protease-producing Bacillus stearothermophilus has been isolated. Glycerol was the best carbon source for production whereas yeast extract was the best nitrogen source. The bacterium could grow up to 70°C but optimum protease production was at 60°C. Best initial pH for protease production was 5. Alkaline pH inhibited production. The enzyme was stable at 60°C for 18 h and was inhibited by EDTA, PMSF and HgCl2.The authors are with the Enzyme and Microbial Technology Group, Faculty of Science and Environmental Studies, Universiti Pertanian Malaysia, 43400 UPM Serdang, Selangor, Malaysia  相似文献   
28.
29.
Aspergillus carbonarius and a strain ofPenicillium are able to grow on Harrold's agar media amended with different concentrations of cadmium chloride up to 2.5% (w/v). Considerable quantities of cadmium were absorbed by both fungi.A. carbonarius absorbed more cadmium than thePenicillium sp. did, under the same culturing conditions. In the presence of cadmium, the determined cellular contents of proteins, lipids, and carbohydrates were extraordinary high, whereas the activities of certain enzymes, lipases, amylases, and proteases were inhibited. The fungal rate of growth and sporulations were mostly suppressed. Conidiations were inhibited at lowest concentrations. At 1% Cd Cl2,A. carbonarius produced malformed conidiophores, whereas thePenicillium sp. was less affected. At higher concentrations conidiophores production were entirely suppressed and several hyphal swellings were produced.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号