首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   605篇
  免费   29篇
  2023年   8篇
  2022年   17篇
  2021年   29篇
  2020年   42篇
  2019年   40篇
  2018年   26篇
  2017年   14篇
  2016年   27篇
  2015年   24篇
  2014年   35篇
  2013年   57篇
  2012年   52篇
  2011年   45篇
  2010年   22篇
  2009年   23篇
  2008年   28篇
  2007年   25篇
  2006年   16篇
  2005年   19篇
  2004年   7篇
  2003年   14篇
  2002年   7篇
  2001年   5篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   4篇
  1994年   2篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   4篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有634条查询结果,搜索用时 125 毫秒
601.
Efforts to improve the clinical management of several cancers include finding better methods for the quantitative and qualitative analysis of circulating tumor cells (CTCs). However, detection and isolation of CTCs from the blood circulation is not a trivial task given their scarcity and the lack of reliable markers to identify these cells. With a variety of emerging technologies, a thorough review of the exploited principles and techniques as well as the trends observed in the development of these technologies can assist researchers to recognize the potential improvements and alternative approaches. To help better understand the related biological concepts, a simplified framework explaining cancer formation and its spread to other organs as well as how CTCs contribute to this process has been presented first. Then, based on their basic working-principles, the existing methods for detection and isolation of CTCs have been classified and reviewed as nucleic acid-based, physical properties-based and antibody-based methods. The review of literature suggests that antibody-based methods, particularly in conjunction with a microfluidic lab-on-a-chip setting, offer the highest overall performance for detection and isolation of CTCs. Further biological and engineering-related research is required to improve the existing methods. These include finding more specific markers for CTCs as well as enhancing the throughput, sensitivity, and analytic functionality of current devices.  相似文献   
602.
603.
Calcitriol is the metabolically active form of Vitamin D and is known to kill cancer cells. Using the rat model of DEN induced hepatocellular carcinoma we show that there is a marked increase in cellular levels of copper in hepatocellular carcinoma and that calcitriol–copper interaction leads to reactive oxygen species mediated DNA breakage selectively in hepatocellular carcinoma cells. In vivo studies show that calcitriol selectively induces severe fluctuations in cellular enzymatic and non enzymatic scavengers of reactive oxygen species in the malignant tissue. Lipid peroxidation, a well established marker of oxidative stress, was found to increase, and substantial cellular DNA breakage was observed. We propose that calcitriol is a proxidant in the cellular milieu of hepatocellular carcinoma cells, and this copper mediated prooxidant action of calcitriol causes selective DNA breakage in malignant cells, while sparing normal (non malignant) cells.  相似文献   
604.
605.
606.
We have purified the type III restriction enzymes EcoP1 and EcoP15 to homogeneity from bacteria that contain the structural genes for the enzymes cloned on small, multicopy plasmids and which overproduce the enzymes. Both of the enzymes contain two different subunits. The molecular weights of the subunits are the same for both enzymes and antibodies prepared against one enzyme cross-react with both subunits of the other. Bacteria containing a plasmid derivative in which a large part of one of the structural genes has been deleted have a restriction- modification+ phenotype and contain only the smaller of the two subunits. This subunit therefore must be the one that both recognizes the specific DNA sequence and methylates it in the modification reaction (the restriction enzyme itself also acts as a modification methylase). We have purified the P1 and P15 modification subunits from these deletion derivatives and have shown that in vitro they have the expected properties: they are sequence-specific modification methylases. In addition, we have demonstrated that strains carrying the full restriction/modification system also contain a pool of free modification subunits that might be responsible for in vivo modification.  相似文献   
607.
S1 nuclease hydrolysis and hydroxyapatite chromatography were used to study the effect of the alkylating antibiotic, streptozotocin, on the secondary structure of DNA. Native calf thymus DNA was alkylatedin vitro with increasing concentrations of streptozotocin and subjected to S 1 nuclease hydrolysis. An increasing degree of DNA degradation was seen, suggesting a destabilization of the secondary structure. Indirect evidence, deduced from alkaline hydrolysis, effect of NaCl on S1 nuclease hydrolysis, and hydroxyapatite chromatographic analysis of alkylated DNA, suggested a significant alkylation of DNA phosphates in addition to DNA bases. Nictotinamide has been reported to alter the cytotoxic and carcinogenic effects of streptozotocin. Our experiments indicate that in the presence of nicotinamide, streptozotocin causes the formation of a greater proportion of alkylated bases in relation to alkyl phosphotriesters. This may have significance in relation to the differential cytotoxicity of streptozotocin in the absence and presence of nicotinamide.  相似文献   
608.
Sturgeon (Chondrostei, Acipenseriformes) are threatened or endangered species due to overfishing and environmental degradation causing disruption of natural reproduction. Commercial sturgeon aquaculture and conservation program requires broodfish management as well as biogeographical and biological knowledge. Therefore, control of sturgeon reproduction in captivity can become as a valid tool in the field of sustainable development. The main objectives of the present review were to summarize, describe and synthesize available data about neuroendocrine control of testicular development, spermiation induction, seminal plasma characteristics and factors affecting sperm quality. In sturgeon, puberty usually occurs late in life and adult males do not spawn on an annual basis. Gonadal differentiation and spermatogonia proliferation occurs at 1?C2 and 2?C3?year-old, respectively. In spermatogenesis, environmental stimuli affect hypothalamus to release GnRH, which induce FSH release from pituitary stimulating testicular androgenesis, which is involved in spermatogonial proliferation and spermatogenesis. At spawning season, GnRH stimulates LH production from pituitary, regulating 17??,20??-dihydroxy-4-pregnen-3-one production in testis, which control sperm maturation. In captivity, hormonal treatment is essential to induce spermiation. Chemical and biochemical compounds of the seminal plasma are important to protect viability, motility and fertilizing capacity of spermatozoa. Several kinds of acrosomal enzymes have been identified in sturgeon seminal plasma; higher concentrations reported in the frozen/thawed than fresh sperm suggesting their origination from spermatozoa. Moreover, there are numerous factors that influence on sperm quality including temperature, methods for spermiation induction, stripping frequency and stress.  相似文献   
609.
Type 1 diabetes mellitus (T1DM) is characterized by an impairment of the insulin-secreting beta cells with an immunologic base. Inflammatory cytokines such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β, and free radicals are believed to play key roles in destruction of pancreatic β cells. The present study was designed to investigate the effect of Silybum marianum seed extract (silymarin), a combination of several flavonolignans with immunomodulatory, anti-oxidant, and anti-inflammatory potential on streptozotocin (STZ)-induced T1DM in mouse. Experimental T1DM was induced in male albino mice by IV injection of multiplelow- doses of STZ for 5 days. Seventy-two male mice in separate groups received various doses of silymarin (20, 40, and 80 mg/kg) concomitant or after induction of diabetes for 21 days. Blood glucose and pancreatic biomarkers of inflammation and toxic stress (IL-1β, TNF-α, myeloperoxidase, lipid peroxidation, protein oxidation, thiol molecules, and total antioxidant capacity) were determined. Silymarin treatment reduced levels of inflammatory cytokines such as TNF-α and IL-1β and oxidative stress mediators like myeloperoxidase activity, lipid peroxidation, carbonyl and thiol content of pancreatic tissue in an almost dose dependent manner. No marked difference between the prevention of T1DM and the reversion of this disease by silymarin was found. Use of silymarin seems to be helpful in T1DM when used as pretreatment or treatment. Benefit of silymarin in human T1DM remains to be elucidated by clinical trials.  相似文献   
610.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号