首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   778篇
  免费   49篇
  2023年   10篇
  2022年   28篇
  2021年   43篇
  2020年   48篇
  2019年   58篇
  2018年   38篇
  2017年   21篇
  2016年   42篇
  2015年   37篇
  2014年   42篇
  2013年   77篇
  2012年   66篇
  2011年   59篇
  2010年   26篇
  2009年   27篇
  2008年   32篇
  2007年   29篇
  2006年   21篇
  2005年   24篇
  2004年   9篇
  2003年   15篇
  2002年   8篇
  2001年   5篇
  2000年   4篇
  1999年   5篇
  1998年   2篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1992年   4篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有827条查询结果,搜索用时 140 毫秒
151.
The roles of gibberellic acid (GA3) and ethylenediaminetetraacetic acid (EDTA) in phytoremediation of cadmium (Cd)-contaminated soil by Parthenium hysterophorus plant was investigated. GA3 (10?9, 10?7, and 10?5M) was applied as a foliar spray. EDTA was added to soil in a single dose (160 mg/kg soil) and split doses (40 mg/kg soil, four split doses). GA3 and EDTA were used separately and in various combinations. P. hysterophorus was selected due to its fast growth and unpalatable nature to herbivores to reduce the entrance of metal into the food chain. The Cd phytoextraction potential of the P. hysterophorus plant was evaluated for the first time. Cd significantly reduced plant growth and dry biomass (DBM). GA3 alone increased the plant growth and biomass in Cd-contaminated soil, whereas EDTA reduced it. GA3 in combination with EDTA significantly increased the growth and biomass. The highest significant DBM was found in treatment T3 (10?5M GA3). All treatments of GA3 or EDTA significantly enhanced the plant Cd uptake and accumulation compared with control (C1). The highest significant root and stem Cd concentrations were found in the combination treatment T11 (GA3 10?5M + EDTA split doses), whereas in leaves it was found in the EDTA treatments. Cd concentration in plant parts increased in the order of stem < leaves < roots. The combination treatment T9 (GA3 10?7M + EDTA split doses) showed the significantly highest total Cd accumulation (8 times greater than control C1, i.e., only Cd used). The GA3 treatments accumulated more than 50% of the total Cd in the roots, whereas the EDTA treatments showed more than 50% in the leaves. Root dry biomass showed a positive and significant correlation with Cd accumulation. GA3 is environment friendly as compared with EDTA. Therefore, further investigation of GA3 is recommended for phytoremediation research for the remediation of metal-contaminated soil.  相似文献   
152.
153.
Recently, cytokines belonging to C1q/tumour necrosis factor‐related proteins (CTRPs) superfamily have attracted increasing attention due to multiple metabolic functions and desirable anti‐inflammatory effects. These various molecular effectors exhibit key roles upon the onset of cardiovascular diseases, making them novel adipo/cardiokines. This review article aimed to highlight recent findings correlated with therapeutic effects and additional mechanisms specific to the CTRP9, particularly in cardiac ischaemia/reperfusion injury (IRI). Besides, the network of the CTPR9 signalling pathway and its possible relationship with IRI were discussed. Together, the discovery of all involved underlying mechanisms could shed light to alleviate the pathological sequelae after the occurrence of IRI.  相似文献   
154.
Removal efficiency of gold from a solution of pure tetrachloroaurate ions was investigated using microbial fuel cell (MFC) technology. The effects of type of catholyte solution and initial gold concentration on the removal efficiency were considered. Due to its presence at high levels in the gold wastewater, the effect of copper ions on the removal efficiency of the gold ions was also studied. The effects of pH and initial biomass concentration on the gold removal efficiency was also determined. The results showed that after 5 h contact time, 95% of gold removal efficiency from a wastewater containing 250 ppm of initial gold ions at ambient temperature using 80 g/L yeast concentration was achieved. After 48 h of the cell''s operation under the same condition, 98.86% of AuCl4 ions were successfully removed from the solution. At initial gold concentration in the waste solution of 250 ppm, pH 2, and initial yeast concentration of 80 g/L, 100% removal efficiency of the gold was achieved. On the other hand, the most suitable condition for copper removal was found at a pH of 5.2, where 53% removal efficiency from the waste solution was accomplished.  相似文献   
155.
156.
Chronic methamphetamine use increases apoptosis, leading to heart failure and sudden cardiac death. Previous studies have shown the importance of high-intensity interval training (HIIT) in reducing indices of cardiac tissue apoptosis in different patients, but in the field of sports science, the molecular mechanisms of apoptosis in methamphetamine-dependent rats are still unclear. The present article aimed to investigate the changes in cardiac apoptosis markers in methamphetamine-dependent rats in response to HIIT. Left ventricular tissue was used to evaluate caspase-3, melusin, FAK, and IQGAP1 gene expression. Rats were divided into four groups: sham, methamphetamine (METH), METH-control, and METH-HIIT. METH was injected for 21 days and then the METH-HIIT group performed HIIT for 8 weeks at 5 sessions per week. The METH groups showed increased caspase-3 gene expression and decreased melusin, FAK, and IQGAP1 when compared to the sham group. METH-HIIT showed decreased caspase-3 and increased melusin and FAK gene expression compared with the METH and METH-control groups. The IQGAP1 gene was higher in METH-HIIT when compared with METH, while no difference was observed between METH-HIIT and METH-control. Twenty-one days of METH exposure increased apoptosis markers in rat cardiac tissue; however, HIIT might have a protective effect, as shown by the apoptosis markers.  相似文献   
157.
Salinity stress is of great importance in arid and semi-arid areas of the world due to its impact in reducing crop yield. Under salinity stress, the amount of 1-aminocyclopropane-1-carboxylate (ACC), a precursor for ethylene production in plants, increases. Here, we conducted research under the hypothesis that isolated ACC deaminase-producing Pseudomonas fluorescens and Pseudomonas putida can alleviate the stressful effects of salinity on canola (Brassica napus L.) growth. The experiments were conducted in the Soil and Water Research Institute, Tehran, Iran. Seven experimental stages were conducted to isolate and characterize ACC deaminase-producing Pseudomonas fluorescens strains and to determine factors enhancing their growth and, consequently, their effects on the germination of canola seeds. Under salinity stress, in 14% of the isolates, ACC deaminase activity was observed, indicating that they were able to utilize ACC as the sole N-source. Bacterial strains differed in their ability to synthesize auxin and hydrogen cyanide compounds, as well as in their ACC deaminase activity. Under salinity stress, the rate of germinating seeds inoculated with the strains of ACC deaminase-producing Pseudomonas fluorescens and Pseudomonas putida, and seedling growth was significantly higher. These results indicate the significance of soil biological activities, including the activities of plant growth-promoting bacteria, in the alleviation of soil stresses such as salinity on plant growth.  相似文献   
158.
The glycosyltransferases (GTs) are an important and functionally diverse family of enzymes involved in glycan and glycoside biosynthesis. Plants have evolved large families of GTs which undertake the array of glycosylation reactions that occur during plant development and growth. Based on the Carbohydrate‐Active enZymes (CAZy) database, the genome of the reference plant Arabidopsis thaliana codes for over 450 GTs, while the rice genome (Oryza sativa) contains over 600 members. Collectively, GTs from these reference plants can be classified into over 40 distinct GT families. Although these enzymes are involved in many important plant specific processes such as cell‐wall and secondary metabolite biosynthesis, few have been functionally characterized. We have sought to develop a plant GTs clone resource that will enable functional genomic approaches to be undertaken by the plant research community. In total, 403 (88%) of CAZy defined Arabidopsis GTs have been cloned, while 96 (15%) of the GTs coded by rice have been cloned. The collection resulted in the update of a number of Arabidopsis GT gene models. The clones represent full‐length coding sequences without termination codons and are Gateway® compatible. To demonstrate the utility of this JBEI GT Collection, a set of efficient particle bombardment plasmids (pBullet) was also constructed with markers for the endomembrane. The utility of the pBullet collection was demonstrated by localizing all members of the Arabidopsis GT14 family to the Golgi apparatus or the endoplasmic reticulum (ER). Updates to these resources are available at the JBEI GT Collection website http://www.addgene.org/ .  相似文献   
159.
160.
The alkaline unwinding assay has been used to demonstrate the formation of single-strand breaks in DNA on treatment with silicic acid. Double-stranded DNA, containing no single-strand breaks, when incubated with increasing concentrations of silicic acid, showed the formation of an increasing number of strand breaks per molecule. Experiments on reduction of silicic acid-treated DNA with NaBH4 suggested the possibility of creation of apurinic or apyrimidinic sites. The significance of silicic acid interaction with cellular DNA during asbestos exposure is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号