全文获取类型
收费全文 | 203篇 |
免费 | 21篇 |
专业分类
224篇 |
出版年
2022年 | 2篇 |
2021年 | 7篇 |
2019年 | 5篇 |
2018年 | 5篇 |
2017年 | 1篇 |
2016年 | 7篇 |
2015年 | 8篇 |
2014年 | 17篇 |
2013年 | 18篇 |
2012年 | 22篇 |
2011年 | 10篇 |
2010年 | 13篇 |
2009年 | 9篇 |
2008年 | 10篇 |
2007年 | 14篇 |
2006年 | 11篇 |
2005年 | 9篇 |
2004年 | 3篇 |
2003年 | 12篇 |
2002年 | 9篇 |
2001年 | 3篇 |
1999年 | 4篇 |
1998年 | 2篇 |
1997年 | 2篇 |
1995年 | 2篇 |
1993年 | 2篇 |
1992年 | 2篇 |
1991年 | 4篇 |
1990年 | 6篇 |
1989年 | 1篇 |
1983年 | 2篇 |
1982年 | 1篇 |
1979年 | 1篇 |
排序方式: 共有224条查询结果,搜索用时 15 毫秒
21.
Assaf Sukenik Ruth N. Kaplan‐Levy Yehudit Viner‐Mozzini Antonio Quesada Ora Hadas 《Journal of phycology》2013,49(3):580-587
Akinetes are spore‐like nonmotile cells that differentiate from vegetative cells of filamentous cyanobacteria from the order Nostocales. They play a key role in the survival and distribution of these species and contribute to their perennial blooms. Various environmental factors were reported to trigger the differentiation of akinetes including light intensity and quality, temperature, and nutrient deficiency. Here, we report that deprivation of potassium ion (K+) triggers akinete development in the cyanobacterium Aphanizomenon ovalisporum. Akinetes formation is initiated 3 d–7 d after an induction by K+ depletion, followed by 2–3 weeks of a maturation process. Akinete formation occurs within a restricted matrix of environmental conditions such as temperature, light intensity or photon flux. Phosphate is essential for akinete maturation and P‐limitation restricts the number of mature akinetes. DNA replication is essential for akinete maturation and akinete development is limited in the presence of Nalidixic acid. While our results unequivocally demonstrated the effect of K+ deficiency on akinete formation in laboratory cultures of A. ovalisporum, this trigger did not cause Cylindrospermopsis raciborskii to produce akinetes. Anabaena crassa however, produced akinetes upon potassium deficiency, but the highest akinete concentration was achieved at conditions that supported vegetative growth. It is speculated that an unknown internal signal is associated with the cellular response to K+ deficiency to induce the differentiation of a certain vegetative cell in a trichome into an akinete. A universal stress protein that functions as mediator in K+ deficiency signal transduction cascade, may communicate between the lack of K+ and akinete induction. 相似文献
22.
Lasry I Seo YA Ityel H Shalva N Pode-Shakked B Glaser F Berman B Berezovsky I Goncearenco A Klar A Levy J Anikster Y Kelleher SL Assaraf YG 《The Journal of biological chemistry》2012,287(35):29348-29361
Zinc is an essential mineral, and infants are particularly vulnerable to zinc deficiency as they require large amounts of zinc for their normal growth and development. We have recently described the first loss-of-function mutation (H54R) in the zinc transporter ZnT-2 (SLC30A2) in mothers with infants harboring transient neonatal zinc deficiency (TNZD). Here we identified and characterized a novel heterozygous G87R ZnT-2 mutation in two unrelated Ashkenazi Jewish mothers with infants displaying TNZD. Transient transfection of G87R ZnT-2 resulted in endoplasmic reticulum-Golgi retention, whereas the WT transporter properly localized to intracellular secretory vesicles in HC11 and MCF-7 cells. Consequently, G87R ZnT-2 showed decreased stability compared with WT ZnT-2 as revealed by Western blot analysis. Three-dimensional homology modeling based on the crystal structure of YiiP, a close zinc transporter homologue from Escherichia coli, revealed that the basic arginine residue of the mutant G87R points toward the membrane lipid core, suggesting misfolding and possible loss-of-function. Indeed, functional assays including vesicular zinc accumulation, zinc secretion, and cytoplasmic zinc pool assessment revealed markedly impaired zinc transport in G87R ZnT-2 transfectants. Moreover, co-transfection experiments with both mutant and WT transporters revealed a dominant negative effect of G87R ZnT-2 over the WT ZnT-2; this was associated with mislocalization, decreased stability, and loss of zinc transport activity of the WT ZnT-2 due to homodimerization observed upon immunoprecipitation experiments. These findings establish that inactivating ZnT-2 mutations are an underlying basis of TNZD and provide the first evidence for the dominant inheritance of heterozygous ZnT-2 mutations via negative dominance due to homodimer formation. 相似文献
23.
Carmit Cohen Evelyn Toh Daniel Munro Qunfeng Dong Hadas Hawlena 《The ISME journal》2015,9(7):1662-1676
Vector-borne microbes are subject to the ecological constraints of two distinct microenvironments: that in the arthropod vector and that in the blood of its vertebrate host. Because the structure of bacterial communities in these two microenvironments may substantially affect the abundance of vector-borne microbes, it is important to understand the relationship between bacterial communities in both microenvironments and the determinants that shape them. We used pyrosequencing analyses to compare the structure of bacterial communities in Synosternus cleopatrae fleas and in the blood of their Gerbillus andersoni hosts. We also monitored the interindividual and seasonal variability in these bacterial communities by sampling the same individual wild rodents during the spring and again during the summer. We show that the bacterial communities in each sample type (blood, female flea or male flea) had a similar phylotype composition among host individuals, but exhibited seasonal variability that was not directly associated with host characteristics. The structure of bacterial communities in male fleas and in the blood of their rodent hosts was remarkably similar and was dominated by flea-borne Bartonella and Mycoplasma phylotypes. A lower abundance of flea-borne bacteria and the presence of Wolbachia phylotypes distinguished bacterial communities in female fleas from those in male fleas and in rodent blood. These results suggest that the overall abundance of a certain vector-borne microbe is more likely to be determined by the abundance of endosymbiotic bacteria in the vector, abundance of other vector-borne microbes co-occurring in the vector and in the host blood and by seasonal changes, than by host characteristics. 相似文献
24.
Schori H Shechter R Shachar I Schwartz M 《Journal of immunology (Baltimore, Md. : 1950)》2007,178(1):163-171
The ability to recover from CNS injuries is strain dependent. Transgenic mice that weakly express the p41 CD74 isoform (an integral membrane protein functioning as a MHC class II chaperone) on an I-A(b) genetic background have normal CD4(+) T cell populations and normal surface expression of MHC class II, but their B cell development is arrested while the cells are still immature. After a CNS injury, these mice recover better than their matched wild-type controls. We generated p41-transgenic mice on an I-A(d) background (p41-I-A(d) mice), and found that their recovery from CNS injuries was worse than that of controls. A correlative inverse effect was seen with respect to the kinetics of T cell and B cell recruitment to the injured CNS and the expression of insulin-like growth factor at the lesion site. These results, besides verifying previous findings that B cells function in the damaged CNS, demonstrate that the outcome of a particular genetic manipulation may be strain dependent. 相似文献
25.
Mechanisms that cause nonrandom patterns of parasite distribution among host individuals may influence the population and
evolutionary dynamics of both parasites and hosts, but are still poorly understood. We studied whether survival, reproduction,
and behavioral responses of fleas (Xenopsylla conformis) changed with the age of their rodent hosts (Meriones crassus), experimentally disentangling two possible mechanisms: (a) differential survival and/or fitness reward of parasites due
to host age, and (b) active parasite choice of a host of a particular age. To explore the first mechanism, we raised fleas
on rodents of two age groups and assessed flea survival as well as the quantity and quality of their offspring. To explore
the second mechanism, three groups of fleas that differed in their previous feeding experience (no experience, experience
on juvenile or experience on adult rodents) were given an opportunity to choose between juvenile and adult rodents in a Y-maze.
Fleas raised on juvenile rodents had higher survival and had more offspring that emerged earlier than fleas raised on adults.
However, fleas did not show any innate preference for juvenile rodents, nor were they able to learn to choose them. In contrast
to our predictions, based on a single previous exposure, fleas learned to choose adult rodents. The results suggest that two
mechanisms—differential survival and fitness reward of fleas, and associative learning by them—affect patterns of flea distribution
between juvenile and adult rodents. The former increases whereas the latter reduces flea densities on juvenile rodents. The
ability of fleas to learn to choose adult but not juvenile hosts may be due to: (a) a stronger stimulus from adults, (b) a
higher profitability of adults in terms of predictability and abundance, or (c) the evolutionary importance of recognizing
adult but not juvenile hosts as representatives of the species. 相似文献
26.
A Synechococcus PglnA::luxAB Fusion for Estimation of Nitrogen Bioavailability to Freshwater Cyanobacteria 下载免费PDF全文
Osnat Gillor Ayelet Harush Ora Hadas Anton F. Post Shimshon Belkin 《Applied microbiology》2003,69(3):1465-1474
In contrast to extensive studies of phosphorus, widely considered the main nutrient limiting phytoplankton biomass in freshwater ecosystems, there have been few studies on the role of nitrogen in controlling phytoplankton populations. This situation may be due partly to the complexity in estimating its utilization and bioavailability. In an attempt to provide a novel tool for this purpose, we fused the promoter of the glutamine synthetase-encoding gene, P glnA, from Synechococcus sp. strain PCC7942 to the luxAB luciferase-encoding genes of the bioluminescent bacterium Vibrio harveyi. The resulting construct was introduced into a neutral site on the Synechococcus chromosome to yield the reporter strain GSL. Light emission by this strain was dependent upon ambient nitrogen concentrations. The linear response range of the emitted luminescence was 1 mM to 1 μM for the inorganic nitrogen species tested (ammonium, nitrate, and nitrite) and 10- to 50-fold lower for glutamine and urea. When water samples collected from along a depth profile in Lake Kinneret (Israel) were exposed to the reporter strain, the bioluminescence of the reporter strain mirrored the total dissolved nitrogen concentrations determined for the same samples and was shown to be a sensitive indicator of the concentration of bioavailable nitrogen. 相似文献
27.
Gillor O Harush A Hadas O Post AF Belkin S 《Applied and environmental microbiology》2003,69(3):1465-1474
In contrast to extensive studies of phosphorus, widely considered the main nutrient limiting phytoplankton biomass in freshwater ecosystems, there have been few studies on the role of nitrogen in controlling phytoplankton populations. This situation may be due partly to the complexity in estimating its utilization and bioavailability. In an attempt to provide a novel tool for this purpose, we fused the promoter of the glutamine synthetase-encoding gene, P glnA, from Synechococcus sp. strain PCC7942 to the luxAB luciferase-encoding genes of the bioluminescent bacterium Vibrio harveyi. The resulting construct was introduced into a neutral site on the Synechococcus chromosome to yield the reporter strain GSL. Light emission by this strain was dependent upon ambient nitrogen concentrations. The linear response range of the emitted luminescence was 1 mM to 1 micro M for the inorganic nitrogen species tested (ammonium, nitrate, and nitrite) and 10- to 50-fold lower for glutamine and urea. When water samples collected from along a depth profile in Lake Kinneret (Israel) were exposed to the reporter strain, the bioluminescence of the reporter strain mirrored the total dissolved nitrogen concentrations determined for the same samples and was shown to be a sensitive indicator of the concentration of bioavailable nitrogen. 相似文献
28.
29.
Meirav Noach-Hirsh Hadas Nevenzal Yair Glick Evelin Chorni Dorit Avrahami Efrat Barbiro-Michaely Doron Gerber Amit Tzur 《Molecular & cellular proteomics : MCP》2015,14(10):2824-2832
Protein post-translational modifications mediate dynamic cellular processes with broad implications in human disease pathogenesis. There is a large demand for high-throughput technologies supporting post-translational modifications research, and both mass spectrometry and protein arrays have been successfully utilized for this purpose. Protein arrays override the major limitation of target protein abundance inherently associated with MS analysis. This technology, however, is typically restricted to pre-purified proteins spotted in a fixed composition on chips with limited life-time and functionality. In addition, the chips are expensive and designed for a single use, making complex experiments cost-prohibitive. Combining microfluidics with in situ protein expression from a cDNA microarray addressed these limitations. Based on this approach, we introduce a modular integrated microfluidic platform for multiple post-translational modifications analysis of freshly synthesized protein arrays (IMPA). The system''s potency, specificity and flexibility are demonstrated for tyrosine phosphorylation and ubiquitination in quasicellular environments. Unlimited by design and protein composition, and relying on minute amounts of biological material and cost-effective technology, this unique approach is applicable for a broad range of basic, biomedical and biomarker research.Protein post-translational modifications (PTMs)1 vastly diversify eukaryotic proteomes and are integrated in essentially all cellular processes (1). Proteomic approaches, such as mass spectrometry (MS), have been instrumental in monitoring global molecular dynamics for research and clinical applications (2–5). However, even in this modern era, large-scale analyses of PTMs by MS is challenging because of the limited number of modified peptides derived from proteins that, by themselves, may not be abundant. Moreover, comprehensive PTM analysis by MS often requires significant amounts of biological material that may not be available. PTM analysis using protein arrays can overcome these limitations because of the equimolar amount of the arrayed proteins (6, 7). Large-scale protein arrays have been successfully integrated into PTM research (8, 9). However, this technology relies on pre-purified proteins that are arrayed on a surface and thus, incompatible with biochemically challenging proteins, let alone insoluble proteins. Moreover, the production of recombinant protein arrays is impractical in-house. Therefore, such arrays cannot be used fresh, and they are inherently limited to certain designs, protein compositions, and model organisms of high commercial value. To overcome the abovementioned limitations, we designed a modular integrated microfluidic platform for PTM analysis (IMPA). 相似文献
30.
We investigated seasonality of gender differences in the patterns of flea infestation in nine rodent species to test if sex-biased parasitism in terms of mean abundance, species richness, prevalence and the level of aggregation (a) varies among hosts and between seasons, and (b) is linked to sexual size dimorphism. Sexual size differences were significant in both summer and winter in Acomys cahirinus, Gerbillus pyramidum and Meriones crassus, and in winter only in Acomys russatus, Gerbillus dasyurus, Gerbillus nanus and Sekeetamys calurus. Sexual size dimorphism was male biased except for A. russatus in which it was female biased. Manifestation of sexual differences in flea infestation was different among hosts between seasons. A significant effect of sex on mean flea abundance was found in six hosts, on mean flea species richness in five hosts and on prevalence in two hosts. Male-biased parasitism was found in summer in one host only and in winter in five hosts. Female-biased parasitism occurred in winter in A. russatus. Gender differences in the slopes of the regressions of log-transformed variances against log-transformed mean abundances occurred in three hosts. No relationship was found between sexual size dimorphism and any parasitological parameter in any season using both conventional regressions and the method of independent contrasts. Our results suggest that sex-biased parasitism is a complicated phenomenon that involves several different mechanisms. 相似文献