首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146篇
  免费   13篇
  2015年   2篇
  2014年   1篇
  2013年   13篇
  2012年   2篇
  2011年   1篇
  2010年   3篇
  2009年   3篇
  2008年   13篇
  2007年   5篇
  2006年   8篇
  2005年   7篇
  2004年   5篇
  2003年   6篇
  2002年   8篇
  2001年   4篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1993年   7篇
  1992年   12篇
  1991年   2篇
  1990年   6篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   5篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1970年   2篇
  1969年   1篇
  1967年   2篇
  1966年   1篇
  1965年   1篇
  1935年   1篇
排序方式: 共有159条查询结果,搜索用时 15 毫秒
51.
52.
Summary The pink snow mold, Microdochium nivale (syn. Fusarium nivale) SUF 1377 strain produced an extracellular low temperature active lipase during growth at 4°C. The lipase had the highest activity at 20°C, and retained 19% of its maximum activity at 0°C.  相似文献   
53.
Healthy pea plants contain a substance, tentatively called "endogenoussuppressor", which specifically suppresses the accumulationof pisatin in pea plants that is induced by treatment with CuCl2or an elicitor from Mycosphaerella pinodes. This suppressorelicits the accumulation of phytoalexins in other legumes, suchas kidney bean, soybean and cowpea. The endogenous suppressorfunctions to delay the accumulation of pisatin, the activationof phenylalanine ammonialyase (PAL) and the accumulation ofmRNAs for PAL and chalcone synthase induced by the elicitorfrom M. pinodes. The substance specifically induces susceptibilityto nonpathogens, such as Mycosphaerella ligulicola and M. melonis,in pea out of four species of legume tested, but the effectis not cultivar-specific. Thus, the endogenous suppressor inhealthy pea plants suppresses a series of self-defense reactionsand induces susceptibility in pea plants in a species-specificmanner, being similar to the exogenous fungal suppressor fromthe pea pathogen, M.pinodes. (Received February 19, 1992; Accepted May 11, 1992)  相似文献   
54.
Orthovanadate delayed accumulation of mRNAs encoding phenylalanineammonia-lyase and chalcone synthase in pea epicotyls inducedby an elicitor from Mycosphaerella pinodes. However, accumulationof mRNA for a putative P-type ATPase was not affected. The relationshipbetweenthe ATPase and defense responses is discussed. 3Present address: Plant Pathology Laboratory, School of Agriculture,Nagoya University, Chikusa, Nagoya, 464-01 Japan.  相似文献   
55.
During vegetative growth φ80)sus2psu3+ and φ80int3sus2psu3+ segregate su3? progeny phages, which have lost suppressor activity, at high frequency, even in the absence of the host Rec system. DNA molecules of the su3? segregants were equivalent to φ80 DNA, as determined by heteroduplex analysis. Loss of suppressor activity is ascribed either to unequal intermolecular crossing-over or to excision by internal recombination between two homologous regions of the phage genome which bracket the bacterial segment containing the su3+ gene. To investigate the recombination system acting on the segregation of su3? phages, a fec?int? deletion derivative of φ80sus2psu3+, φ80Δ4sus2psu3+, has been isolated that is stable even after several cycles of growth in the absence of the host Rec system. However, segregation of su3? phages from φ80Δ4sus2psu3+ was observed when it was complemented in vivo with the hybrid phage λatt80imm80 in the absence of the host Rec system. The Δ4 deletion is 12.4% of the φ80 genome, starting at a distance of 1.6% φ80 unit to the right from the φ80 crossover point, pp′, i.e. located between 54.6% and 67.0% φ80 unit, as measured from the left (0%) termini of the mature φ80 DNA molecules. By locating the regions of homology between the DNAs of λ and φ80 (Fiandt et al., 1971), the region deleted in φ80Δ4sus2psu3+ was assigned to the genes of the phage Red system and a part of the int gene. In the presence of the host Rec system, φ80Δ4-sus2psu3+ segregates both phages, φ80Δ4sus2 and φ80Δ4sus2p(su3+)2, which were excised or duplicated for su3+-transducing fragments. The loss of the duplication in φ80Δ4sus2p(su3+)2 is also promoted by the host Rec system. Either of two generalized recombination systems, viral Red system or host Rec system, can play a role in the production of the excisions and the duplications of transducing fragments.  相似文献   
56.
57.
58.
Mutants of Escherichia coli defective in the HemA protein grow extremely poorly as the result of heme deficiency. A novel hemA mutant was identified whose rate of growth was dramatically enhanced by addition to the medium of low concentrations of translational inhibitors, such as chloramphenicol and tetracycline. This mutant (H110) carries mutation at position 314 in the hemA gene, which resulted in diminished activity of the encoded protein. Restoration of growth of H110 upon addition of the drugs mentioned above was due to activation of the synthesis of porphyrin. However, this activation was not characteristic exclusively of cells with this mutant hemA gene since it was also observed in a heme-deficient strain bearing the wild-type hemA gene. The activation did not depend on the promoter activity of the hemA gene, as indicated by studies with fusion genes. It appears that partial inhibition of protein synthesis via inhibition of peptidyltransferase can promote the synthesis of porphyrin by providing an increased supply of Guamyl-tRNA for porphyrin synthesis. Glutamyl-tRNA is the common substrate for peptidyltransferase and HemA.  相似文献   
59.
Inhibitory Smads (I-Smads) repress signaling by cytokines of the transforming growth factor-beta (TGF-beta) superfamily. I-Smads have conserved carboxy-terminal Mad homology 2 (MH2) domains, whereas the amino acid sequences of their amino-terminal regions (N domains) are highly divergent from those of other Smads. Of the two different I-Smads in mammals, Smad7 inhibited signaling by both TGF-beta and bone morphogenetic proteins (BMPs), whereas Smad6 was less effective in inhibiting TGF-beta signaling. Analyses using deletion mutants and chimeras of Smad6 and Smad7 revealed that the MH2 domains were responsible for the inhibition of both TGF-beta and BMP signaling by I-Smads, but the isolated MH2 domains of Smad6 and Smad7 were less potent than the full-length Smad7 in inhibiting TGF-beta signaling. The N domains of I-Smads determined the subcellular localization of these molecules. Chimeras containing the N domain of Smad7 interacted with the TGF-beta type I receptor (TbetaR-I) more efficiently, and were more potent in repressing TGF-beta signaling, than those containing the N domain of Smad6. The isolated N domain of Smad7 physically interacted with the MH2 domain of Smad7, and enhanced the inhibitory activity of the latter through facilitating interaction with TGF-beta receptors. The N domain of Smad7 thus plays an important role in the specific inhibition of TGF-beta signaling.  相似文献   
60.
More than 1,000 blood samples were collected from macaques of speciesM. fuscata, M. cyclopis, M. irus, M. mulatta, M. nemestrina, andM. speciosa, and all or a part of them were tested for human-type ABO, MN, and Lewis blood groups, and Gm and Inv factors. Differences between and/or within species analogous to racial differences in man were markedly noted in the distribution of the ABO and Lewis blood groups. Saliva samples from a small number ofM. fuscata were tested quantitatively for the presence of H and Lewis substances, and it was found that almost all the animals were secretors of H, Lea, and Leb, independently of the Lewis blood groups of their red cells. Red cells of all macaques tested contained M or M-like, but not Nv(V), antigens, and no polymorphism of MN blood groups was present. Selected plasma samples fromM. fuscata, M. cyclopis, M. irus, andM. nemestrina were found to be negative for all Gm(1), Gm(2), Gm(4), and Inv(1) factors tested.This study was supported in part by the Japan Society for Promotion of Science Grant B-54 and by National Science Foundation Grant FJ 4.11. 1 as part of the Japan-U.S. Cooperative Science Program.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号