首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   336篇
  免费   32篇
  国内免费   1篇
  2023年   2篇
  2022年   4篇
  2021年   4篇
  2019年   7篇
  2018年   2篇
  2017年   4篇
  2016年   3篇
  2015年   16篇
  2014年   20篇
  2013年   12篇
  2012年   21篇
  2011年   34篇
  2010年   11篇
  2009年   25篇
  2008年   12篇
  2007年   25篇
  2006年   13篇
  2005年   19篇
  2004年   16篇
  2003年   10篇
  2002年   16篇
  2001年   14篇
  2000年   8篇
  1999年   12篇
  1998年   5篇
  1997年   2篇
  1995年   4篇
  1994年   2篇
  1993年   3篇
  1992年   4篇
  1991年   3篇
  1990年   3篇
  1987年   2篇
  1984年   2篇
  1983年   2篇
  1976年   2篇
  1974年   2篇
  1972年   1篇
  1971年   3篇
  1970年   2篇
  1969年   2篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
  1959年   1篇
  1955年   1篇
  1954年   1篇
  1953年   1篇
  1952年   1篇
  1948年   1篇
排序方式: 共有369条查询结果,搜索用时 15 毫秒
201.
202.
Translation fidelity and efficiency require multiple ribosomal (r)RNA modifications that are mostly mediated by small nucleolar (sno)RNPs during ribosome production. Overlapping basepairing of snoRNAs with pre-rRNAs often necessitates sequential and efficient association and dissociation of the snoRNPs, however, how such hierarchy is established has remained unknown so far. Here, we identify several late-acting snoRNAs that bind pre-40S particles in human cells and show that their association and function in pre-40S complexes is regulated by the RNA helicase DDX21. We map DDX21 crosslinking sites on pre-rRNAs and show their overlap with the basepairing sites of the affected snoRNAs. While DDX21 activity is required for recruitment of the late-acting snoRNAs SNORD56 and SNORD68, earlier snoRNAs are not affected by DDX21 depletion. Together, these observations provide an understanding of the timing and ordered hierarchy of snoRNP action in pre-40S maturation and reveal a novel mode of regulation of snoRNP function by an RNA helicase in human cells.  相似文献   
203.
Actin nucleation triggers the formation of new actin filaments and has the power to shape cells but requires tight control in order to bring about proper morphologies. The regulation of the members of the novel class of WASP Homology 2 (WH2) domain-based actin nucleators, however, thus far has largely remained elusive. Our study reveals signal cascades and mechanisms regulating Cordon-Bleu (Cobl). Cobl plays some, albeit not fully understood, role in early arborization of neurons and nucleates actin by a mechanism that requires a combination of all three of its actin monomer–binding WH2 domains. Our experiments reveal that Cobl is regulated by Ca2+ and multiple, direct associations of the Ca2+ sensor Calmodulin (CaM). Overexpression analyses and rescue experiments of Cobl loss-of-function phenotypes with Cobl mutants in primary neurons and in tissue slices demonstrated the importance of CaM binding for Cobl’s functions. Cobl-induced dendritic branch initiation was preceded by Ca2+ signals and coincided with local F-actin and CaM accumulations. CaM inhibitor studies showed that Cobl-mediated branching is strictly dependent on CaM activity. Mechanistic studies revealed that Ca2+/CaM modulates Cobl’s actin binding properties and furthermore promotes Cobl’s previously identified interactions with the membrane-shaping F-BAR protein syndapin I, which accumulated with Cobl at nascent dendritic protrusion sites. The findings of our study demonstrate a direct regulation of an actin nucleator by Ca2+/CaM and reveal that the Ca2+/CaM-controlled molecular mechanisms we discovered are crucial for Cobl’s cellular functions. By unveiling the means of Cobl regulation and the mechanisms, by which Ca2+/CaM signals directly converge on a cellular effector promoting actin filament formation, our work furthermore sheds light on how local Ca2+ signals steer and power branch initiation during early arborization of nerve cells—a key process in neuronal network formation.  相似文献   
204.
The genetic basis of fitness reduction associated with inbreeding is still poorly understood. Here we use associations between allozyme genotypes and fitness to investigate the genetic basis of inbreeding depression in experimental outdoor populations of the water flea, Daphnia magna. In Daphnia, a phase of clonal reproduction follows hatching from sexually produced resting eggs, and changes in genotype frequencies during the clonal phase can be used to estimate fitness. Our experiment resembles natural colonization of ponds in that single clones colonize an empty pool, expand asexually and produce sexual offspring by selfing (sisters mate with their clonal brothers). These offspring diapause and form populations consisting of selfed sibships in the following spring. In 12 of 13 experimental populations, genotypes of selfed hatchlings after diapause conformed to Mendelian expectations. During the subsequent ca. 10 asexual generations, however, genotype frequencies changed significantly at 19 of 27 single loci studied within populations, mostly in favour of heterozygotes, with heterozygosity at multiple loci affecting the change in genotype frequency multiplicatively. Because variance in heterozygosity among siblings at a given marker reflects only heterozygosity in the chromosomal region around this marker, our results suggest that selection at fitness-associated loci in the chromosomal regions near the markers were responsible for these changes. The genotype frequency changes were more consistent with selection acting on linked loci than on the allozymes themselves. Taken together, the evidence for abundant selection in the chromosomal regions of the markers and the fact that changes in genotype frequencies became apparent only after several generations of clonal selection, point to a genetic load consisting of many alleles of small or intermediate effects, which is consistent with the strong genetic differentiation and repeated genetic bottlenecks in the metapopulation from which the animals for this study were obtained.  相似文献   
205.
Background: Disturbances by avalanches have created unique habitats for animals and plants in subalpine ecosystems worldwide, but at the same time avalanches can pose a major threat to humans. Thus, avalanches are suppressed by means of avalanche barriers to protect settlements and infrastructures in populated areas of the European Alps. As a consequence, the disturbance regime in avalanche tracks has fundamentally changed. Methods: In the present study we address ecological consequences of avalanche suppression on plant diversity. We analysed plant diversity and species composition in recent and old avalanche tracks with and without avalanche suppression and in undisturbed adjacent forests at high and low elevations. Results: The number of species was higher in both active and inactive avalanche tracks as compared to undisturbed subalpine forest. The species composition indicated a wider range of ecological niches in active than in inactive avalanche tracks. The vegetation from active tracks showed lower indicator values for temperature and nitrogen availability. The proportion of alpine species was lower in formerly active tracks. Conclusions: The conditions that exist in active avalanche tracks increase plant diversity in relation to undisturbed forest. In the few decades following avalanche suppression, species composition changes in tracks from which avalanches have been excluded. Continued suppression of avalanche disturbance may lead to a decline in plant and habitat diversity. Avalanche disturbance can exert an important influence on the biodiversity of subalpine forests and provide important habitats. Anthropogenic changes in the natural regime of avalanche disturbance are likely to contribute significantly to future landscape changes in subalpine forests.  相似文献   
206.
DNA microarrays used as 'genomic sensors' have great potential in clinical diagnostics. Biases inherent in random PCR-amplification, cross-hybridization effects, and inadequate microarray analysis, however, limit detection sensitivity and specificity. Here, we have studied the relationships between viral amplification efficiency, hybridization signal, and target-probe annealing specificity using a customized microarray platform. Novel features of this platform include the development of a robust algorithm that accurately predicts PCR bias during DNA amplification and can be used to improve PCR primer design, as well as a powerful statistical concept for inferring pathogen identity from probe recognition signatures. Compared to real-time PCR, the microarray platform identified pathogens with 94% accuracy (76% sensitivity and 100% specificity) in a panel of 36 patient specimens. Our findings show that microarrays can be used for the robust and accurate diagnosis of pathogens, and further substantiate the use of microarray technology in clinical diagnostics.  相似文献   
207.
The N-glycosylation sites of human Tamm-Horsfall glycoprotein from one healthy male donor have been characterized, based on an approach using endoproteinase Glu-C (V-8 protease, Staphylococcus aureus ) digestion and a combination of chromatographic techniques, automated Edman sequencing, and fast atom bombardment mass spectrometry. Seven out of the eight potential N-glycosylation sites, namely, Asn52, Asn56, Asn208, Asn251, Asn298, Asn372, and Asn489, turned out to be glycosylated, and the potential glycosylation site at Asn14, being close to the N-terminus, is not used. The carbohydrate microheterogeneity on three of the glycosylation sites was studied in more detail by high-pH anion-exchange chromatographic profiling and 500 MHz1H-NMR spectroscopy. Glycosylation site Asn489 contains mainly di- and tri-charged oligosaccharides which comprise, among others, the GalNAc4 S (beta1-4)GlcNAc terminal sequence. Only glycosylation site Asn251 bears oligomannose-type carbohydrate chains ranging from Man5GlcNAc2to Man8GlcNAc2, in addition to a small amount of complex- type structures. Profiling of the carbohydrate moieties of Asn208 indicates a large heterogeneity, similar to that established for native human Tamm-Horsfall glycoprotein, namely, multiply charged complex-type carbohydrate structures, terminated by sulfate groups, sialic acid residues, and/or the Sda-determinant.   相似文献   
208.
209.
This study was conducted to determine the utility of deletion spectrum and mutant frequency (MF) of the hypoxanthine phosphoribosyl transferase gene (HPRT) as indicators of radiation exposure in Russian Liquidators who served in 1986 or 1987 in the clean up effort following the nuclear power plant accident at Chernobyl. HPRT MF was determined using the cloning assay for 117 Russian Controls and 122 Liquidators whose blood samples were obtained between 1991 and 1998. Only subjects from whom mutants were obtained for deletion analysis are included. Multiplex PCR analysis was performed on cell extracts of 1080 thioguanine resistant clones from Controls and 944 clones from Liquidators. Although the deletion spectra of Liquidators and Controls were similar overall, the Liquidator deletion spectrum was heterogeneous over time. Most notable, the proportion of total gene deletions was higher in 1991–1992 Liquidators than in Russian Controls (χ2=10.5, p=0.001) and in 1993–1994 Liquidators (χ2=8.3, p=0.004), and was marginally elevated relative to 1995–1996 Liquidators (χ2=3.3, p=0.07). This type of mutation has been highly associated with radiation exposure. Total gene deletions were not increased after 1992. Band shift mutations were also increased in the 1991–1992 Liquidators but were associated with increased MF of both Liquidators and Controls (p=0.009), not with increased MF in 1991–1992 Liquidators (p=0.7), and hence are not believed to be associated with radiation exposure. Regression analysis demonstrated that relative to Russian Controls HPRT MF was elevated in Liquidators overall when adjusted for age and smoking status (37%, p=0.0001), and also was elevated in Liquidators sampled in 1991–1992 (72%, p=0.0076), 1993–1994 (22%, p=0.037), and 1995–1996 (62%, p=0.0001). In summary, HPRT MF was found to be the more sensitive and persistent indicator of radiation exposure, but the specificity of total gene deletions led to detection of probable heterogeneity of radiation exposure within the exposed population.  相似文献   
210.
Dendritic cells (DCs) promote adaptive immunity by cross-presenting antigen-based epitopes to CD8+ T cells. DCs process internalized protein antigens into peptides that enter the endoplasmic reticulum (ER), bind to major histocompatibility type I (MHC-I) protein complexes, and are transported to the cell surface for cross-presentation. DCs can exhibit activation of the ER stress sensor IRE1α without ER stress, but the underlying mechanism remains obscure. Here, we show that antigen-derived hydrophobic peptides can directly engage ER-resident IRE1α, masquerading as unfolded proteins. IRE1α activation depletes MHC-I heavy-chain mRNAs through regulated IRE1α-dependent decay (RIDD), curtailing antigen cross-presentation. In tumor-bearing mice, IRE1α disruption increased MHC-I expression on tumor-infiltrating DCs and enhanced recruitment and activation of CD8+ T cells. Moreover, IRE1α inhibition synergized with anti–PD-L1 antibody treatment to cause tumor regression. Our findings identify an unexpected cell-biological mechanism of antigen-driven IRE1α activation in DCs, revealing translational potential for cancer immunotherapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号