首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4984篇
  免费   257篇
  国内免费   9篇
  2023年   46篇
  2022年   99篇
  2021年   124篇
  2020年   92篇
  2019年   112篇
  2018年   137篇
  2017年   124篇
  2016年   191篇
  2015年   271篇
  2014年   321篇
  2013年   346篇
  2012年   413篇
  2011年   401篇
  2010年   260篇
  2009年   225篇
  2008年   277篇
  2007年   262篇
  2006年   207篇
  2005年   187篇
  2004年   169篇
  2003年   142篇
  2002年   130篇
  2001年   101篇
  2000年   96篇
  1999年   73篇
  1998年   31篇
  1997年   29篇
  1996年   21篇
  1995年   25篇
  1994年   15篇
  1993年   11篇
  1992年   30篇
  1991年   20篇
  1990年   16篇
  1989年   27篇
  1988年   14篇
  1987年   15篇
  1986年   12篇
  1985年   14篇
  1984年   16篇
  1983年   11篇
  1982年   12篇
  1981年   9篇
  1979年   18篇
  1978年   14篇
  1976年   11篇
  1975年   12篇
  1974年   13篇
  1973年   11篇
  1972年   8篇
排序方式: 共有5250条查询结果,搜索用时 31 毫秒
121.
122.
123.
Glucose is a main energy source for normal brain functions. Glucokinase (GK) plays an important role in glucose metabolism as a glucose sensor, and GK activity is modulated by glucokinase regulatory protein (GKRP). In this study, we examined the changes of GK and GKRP immunoreactivities in the gerbil hippocampus after 5 min of transient global cerebral ischemia. In the sham-operated-group, GK and GKRP immunoreactivities were easily detected in the pyramidal neurons of the stratum pyramidale of the hippocampus. GK and GKRP immunoreactivities in the pyramidal neurons were distinctively decreased in the hippocampal CA1 region (CA), not CA2/3, 3 days after ischemia–reperfusion (I–R). Five days after I–R, GK and GKRP immunoreactivities were hardly detected in the CA1, not CA2/3, pyramidal neurons; however, at this point in time, GK and GKRP immunoreactivities were newly expressed in astrocytes, not microglia, in the ischemic CA1. In brief, GK and GKRP immunoreactivities are changed in pyramidal neurons and newly expressed in astrocytes in the ischemic CA1 after transient cerebral ischemia. These indicate that changes of GK and GKRP expression may be related to the ischemia-induced neuronal damage/death.  相似文献   
124.
MicroRNAs (miRNAs) are small RNA molecules (~ 20–30 nucleotides) that generally act in gene silencing and translational repression through the RNA interference pathway. They generally originate from intergenic genomic regions, but some are found in genomic regions that have been characterized such as introns, exons, and transposable elements (TE). To identify the miRNAs that are derived from palindromic MERs, we analyzed MER paralogs in human genome. The structures of the palindromic MERs were similar to the hairpin structure of miRNA in humans. Three miRNAs derived from MER96 located on chromosome 3, and MER91C paralogs located on chromosome 8 and chromosome 17 were identified in HeLa, HCT116, and HEK293 cell lines. The interactions between these MER-derived miRNAs and AGO1, AGO2, and AGO3 proteins were validated by immunoprecipitation assays. The data suggest that miRNAs derived from transposable elements could widely affect various target genes in the human genome.  相似文献   
125.
Glioblastoma multiforme (GBM) cells invade along the existing normal capillaries in brain. Normal capillary endothelial cells function as the blood–brain barrier (BBB) that limits permeability of chemicals into the brain. To investigate whether GBM cells modulate the BBB function of normal endothelial cells, we developed a new in vitro BBB model with primary cultures of rat brain endothelial cells (RBECs), pericytes, and astrocytes. Cells were plated on a membrane with 8 μm pores, either as a monolayer or as a BBB model with triple layer culture. The BBB model consisted of RBEC on the luminal side as a bottom, and pericytes and astrocytes on the abluminal side as a top of the chamber. Human GBM cell line, LN-18 cells, or lung cancer cell line, NCI-H1299 cells, placed on either the RBEC monolayer or the BBB model increased the transendothelial electrical resistance (TEER) values against the model, which peaked within 72 h after the tumor cell application. The TEER value gradually returned to baseline with LN-18 cells, whereas the value quickly dropped to the baseline in 24 h with NCI-H1299 cells. NCI-H1299 cells invaded into the RBEC layer through the membrane, but LN-18 cells did not. Fibroblast growth factor 2 (FGF-2) strengthens the endothelial cell BBB function by increased occludin and ZO-1 expression. In our model, LN-18 and NCI-H1299 cells secreted FGF-2, and a neutralization antibody to FGF-2 inhibited LN-18 cells enhanced BBB function. These results suggest that FGF-2 would be a novel therapeutic target for GBM in the perivascular invasive front.  相似文献   
126.
Aging is an inevitable process that occurs in the whole body system accompanying with many functional and morphological changes. Inflammation is known as one of age-related factors, and inflammatory changes could enhance mortality risk. In this study, we compared immunoreactivities of inflammatory cytokines, such as interleukin (IL)-2 (a pro-inflammatory cytokine), its receptor (IL-2R), IL-4 (an anti-inflammatory cytokine), and its receptor (IL-4R) in the cervical and lumbar spinal cord of young adult (2–3 years old) and aged (10–12 years old) beagle dogs using immunohistochemistry and western blotting. IL-2 and IL-2R-immunoreactive nerve cells were found throughout the gray matter of the cervical and lumbar spinal cord of young adult and aged dogs. In the spinal cord neurons of the aged dog, immunoreactivity and protein levels were apparently increased compared with those in the young adult dog. Change patterns of IL-4- and IL-4R-immunoreactive cells and their protein levels were also similar to those in IL-2 and IL-2R; however, IL-4 and IL-4R immunoreactivity in the periphery of the neuronal cytoplasm in the aged dog was much stronger than that in the young adult dog. These results indicate that the increase of inflammatory cytokines and their receptors in the aged spinal cord might be related to maintaining a balance of inflammatory reaction in the spinal cord during normal aging.  相似文献   
127.
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important swine pathogens because it is highly infectious and causes economic losses due to decreased pig productivity. In this study, the 603 bp complete major envelope protein encoding gene (ORF5) of 32 field PRRSV isolates from Vietnam collected during 2008–2012 were sequenced and analyzed. Multiple nucleotide (nt) and deduced amino acid (aa) alignments of ORF5 were performed on the 32 isolates: the representative strains (European and North American genotypes), Chinese strains available in GenBank and vaccine strains licensed for use in Vietnam. The results showed 94.8–100.0% nt identity and 94.0–100% aa similarity among the 32 isolates. These isolates shared similarities with the prototype of the North American PRRSV strain (VR‐2332; nt 87.8–89.3%, aa 87.5–90.0%), and Lelystat virus, the prototype of the European PRRSV strain (LV; nt 61.1–61.9%, aa 55.1‐57.0%). There was greater similarity with QN07 (nt 96.5‐98.5%, aa 96.0‐99.0%) from the 2007 PRRS outbreak in QuangNam Province, CH‐1a (nt 93.2–95.1%, 91.5–93.5%) isolated in China in 1995 and JXA1 (nt 96.5–98.6%, aa 95.0–98.0%), the highly pathogenic strain from China isolated in 2006. The Vietnamese isolates were more similar to JXA1‐R (nt 96.5–98.6%, aa 95.0–98.0%), the strain used in Chinese vaccines, than to Ingelvac MLV/BSL‐PS (nt 87.2–89.0%, aa 86.0–89.0%). Phylogenetic analysis showed that the 32 isolates were of the North American genotype and classified into sub‐lineage 8.7. This sub‐lineage contains highly pathogenic Chinese PRRSV strains. This study documents genetic variation in circulating PRRSV strains and could assist more effective use of PRRS vaccines in Vietnam.  相似文献   
128.
Phosphoserine phosphatase (PSP) catalyzes the final and irreversible step of L‐serine synthesis by hydrolyzing phosphoserine to produce L ‐serine and inorganic phosphate. Developing a therapeutic drug that interferes with serine production is of great interest to regulate the pathogenicity of some bacteria and control D ‐serine levels in neurological diseases. We determined the crystal structure of PSP from the hyperthermophilic archaeon Thermococcus onnurineus at 1.8 Å resolution, revealing an NDSB ligand bound to a novel site that is located in a fissure between the catalytic domain and the CAP module. The structure shows a half‐open conformation of the CAP 1 module with a unique protruding loop of residues 150–155 that possesses a helical conformation in other structures of homologous PSPs. Activity assays indicate that the enzyme exhibits marginal PSP activity at low temperature but a sharp increase in the kcat/KM value, approximately 22 fold, when the temperature is increased. Structural and biochemical analyses suggest that the protruding loop in the active site might be an essential component for the regulation of the activity of PSP from hyperthermophilic T. onnurineus. Identification of this novel binding site distantly located from the catalytic site may be exploited for the development of effective therapeutic allosteric inhibitors against PSP activity. © Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
129.
Pure carbon nanotube (CNT) oscillators are compared to the corresponding CNT oscillators encapsulating copper nanowires (Cu@CNTs) by molecular dynamics simulations. The classical oscillation theory provides a fairly good estimate of the mass dependence of the operating frequency when the CNT surface is not deformed by the Cu nanowire. The structural deformations of the CNT induced by the encapsulated copper nanowire have a greater effect on the oscillation frequency than the mass of the copper nanowire. The excess forces of the Cu@CNT oscillator are slightly higher than those of the CNT oscillator and the excess van der Waals forces induced by the inter-wall interactions are 17 times higher than the excess forces induced by the Cu nanowire–CNT interactions.  相似文献   
130.
Abstract

DNA-drug complexes are important because of their pharmacological interest but, in addition, they provide a useful model to study the essential aspects of DNA recognition processes. In order to investigate the influence of ligand binding on the dynamic properties of DNA we have carried out normal mode analysis for complexes with drugs of two types: a typical intercalator, 9-aminoacridine, and a typical groove binder, netropsin. Normal modes are analysed in terms of helicoidal parameter variations with special attention being paid to global deformations of the double helix. The results show that the influence of these two drugs is very different. Intercalation of 9-aminoacridine leads to an increase in the flexibility of the intercalated dinucleotide step, with notably larger vibrational amplitudes for both roll and twist parameters compared to free DNA. In contrast, the groove binding of netropsin induces a stiffening of the DNA segment which is in contact with the drug reflected by decreased vibrational amplitudes for backbone angles and inter base pair helicoidal parameters and an increase in vibrations for adjacent base pairs in terms of buckle and propeller twist.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号