首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3105篇
  免费   158篇
  国内免费   1篇
  2023年   16篇
  2022年   36篇
  2021年   74篇
  2020年   46篇
  2019年   58篇
  2018年   72篇
  2017年   72篇
  2016年   128篇
  2015年   172篇
  2014年   223篇
  2013年   219篇
  2012年   267篇
  2011年   245篇
  2010年   167篇
  2009年   142篇
  2008年   188篇
  2007年   172篇
  2006年   129篇
  2005年   121篇
  2004年   126篇
  2003年   90篇
  2002年   85篇
  2001年   76篇
  2000年   70篇
  1999年   44篇
  1998年   26篇
  1997年   16篇
  1996年   16篇
  1995年   7篇
  1994年   4篇
  1993年   5篇
  1992年   15篇
  1991年   12篇
  1990年   11篇
  1989年   14篇
  1988年   9篇
  1987年   6篇
  1986年   7篇
  1985年   9篇
  1984年   5篇
  1983年   4篇
  1982年   8篇
  1979年   9篇
  1978年   4篇
  1977年   5篇
  1976年   4篇
  1975年   4篇
  1974年   5篇
  1973年   4篇
  1972年   5篇
排序方式: 共有3264条查询结果,搜索用时 17 毫秒
111.
Haploinsufficiency is a form of genetic dominance and is the underlying mechanism of numerous human inherited conditions in which the causal genes are sensitive to altered dosage. This review examines the poorly understood relationships between haploinsufficiency, dosage sensitivity and genetic dominance, whose common theme is the existence of nonlinear relationships between genotype and phenotype. We present an up‐to‐date account of the bases of haploinsufficiency from the perspective of theoretical and experimental models. We also discuss human conditions caused by haploinsufficiency, including developmental syndromes and cancer. Connections between the understanding of these conditions' genetic mechanisms and advances in treatments are also described.  相似文献   
112.
Prolonged endoplasmic reticulum (ER) stress reduces protein synthesis and induces apoptosis in mammalian cells. When dimethyl sulfoxide (DMSO), a specific monoclonal antibody productivity (qmAb)‐enhancing reagent, is added to recombinant Chinese hamster ovary (rCHO) cell cultures (GSR cell line), it induces ER stress and apoptosis in a dose‐dependent manner. To determine an effective ER stress inhibitor, three ER stress inhibitors (BiP inducer X [BIX], tauroursodeoxycholic acid, and carbazole) are examined and BIX shows the best production performance. Coaddition of BIX (50 μm ) with DMSO extends the culture longevity and enhances qmAb. As a result, the maximum mAb concentration is significantly increased with improved galactosylation. Coaddition of BIX significantly increases the expression level of binding immunoglobulin protein (BiP) followed by increased expression of chaperones (calnexin and GRP94) and galactosyltransferase. Furthermore, the expression levels of CHOP, a well‐known ER stress marker, and cleaved caspase‐3 are significantly reduced, suggesting that BIX addition reduces ER stress‐induced cell death by relieving ER stress. The beneficial effect of BIX on mAb production is also demonstrated with another qmAb‐enhancing reagent (sodium butyrate) and a different rCHO cell line (CS13‐1.00). Taken together, BIX is an effective ER stress inhibitor that can be used to increase mAb production in rCHO cells.  相似文献   
113.
A family of serine proteases (SPs) mediates the proteolytic cascades of embryonic development and immune response in invertebrates. These proteases, called easter-type SPs, consist of clip and chymotrypsin-like SP domains. The SP domain of easter-type proteases differs from those of typical SPs in its primary structure. Herein, we report the first crystal structure of the SP domain of easter-type proteases, presented as that of prophenoloxidase activating factor (PPAF)-I in zymogen form. This structure reveals several important structural features including a bound calcium ion, an additional loop with a unique disulfide linkage, a canyon-like deep active site, and an exposed activation loop. We subsequently show the role of the bound calcium and the proteolytic susceptibility of the activation loop, which occurs in a clip domain-independent manner. Based on biochemical study in the presence of heparin, we suggest that PPAF-III, highly homologous to PPAF-I, contains a surface patch that is responsible for enhancing the catalytic activity through interaction with a nonsubstrate region of a target protein. These results provide insights into an activation mechanism of easter-type proteases in proteolytic cascades, in comparison with the well studied blood coagulation enzymes in mammals.  相似文献   
114.
Cardiac contraction and relaxation are regulated by conformational transitions of protein complexes that are responsible for calcium trafficking through cell membranes. Central to the muscle relaxation phase is a dynamic membrane protein complex formed by Ca2+-ATPase (SERCA) and phospholamban (PLN), which in humans is responsible for approximately 70% of the calcium re-uptake in the sarcoplasmic reticulum. Dysfunction in this regulatory mechanism causes severe pathophysiologies. In this report, we used a combination of nuclear magnetic resonance, electron paramagnetic resonance, and coupled enzyme assays to investigate how single mutations at position 21 of PLN affects its structural dynamics and, in turn, its interaction with SERCA. We found that it is possible to control the activity of SERCA by tuning PLN structural dynamics. Both increased rigidity and mobility of the PLN backbone cause a reduction of SERCA inhibition, affecting calcium transport. Although the more rigid, loss-of-function (LOF) mutants have lower binding affinities for SERCA, the more dynamic LOF mutants have binding affinities similar to that of PLN. Here, we demonstrate that it is possible to harness this knowledge to design new LOF mutants with activity similar to S16E (a mutant already used in gene therapy) for possible application in recombinant gene therapy. As proof of concept, we show a new mutant of PLN, P21G, with improved LOF characteristics in vitro.  相似文献   
115.

Background

Tuberculous meningitis (TBM) is a devastating condition. The rapid instigation of appropraite chemotherapy is vital to reduce morbidity and mortality. However rapid diagnosis remains elusive; smear microscopy has extremely low sensitivity on cerebrospinal fluid (CSF) in most laboratories and PCR requires expertise with advanced infrastructure and has sensitivity of only around 60% under optimal conditions. Neither technique allows for the microbiological isolation of M. tuberculosis and subsequent drug susceptibility testing. We evaluated the recently developed microscopic observation drug susceptibility (MODS) assay format for speed and accuracy in diagnosing TBM.

Methodology/Principal Findings

Two hundred and thirty consecutive CSF samples collected from 156 patients clinically suspected of TBM on presentation at a tertiary referal hospital in Vietnam were enrolled into the study over a five month period and tested by Ziehl-Neelsen (ZN) smear, MODS, Mycobacterial growth Indicator tube (MGIT) and Lowenstein-Jensen (LJ) culture. Sixty-one samples were from patients already on TB therapy for >1day and 19 samples were excluded due to untraceable patient records. One hundred and fifty samples from 137 newly presenting patients remained. Forty-two percent (n = 57/137) of patients were deemed to have TBM by clinical diagnostic and microbiological criteria (excluding MODS). Sensitivity by patient against clinical gold standard for ZN smear, MODS MGIT and LJ were 52.6%, 64.9%, 70.2% and 70.2%, respectively. Specificity of all microbiological techniques was 100%. Positive and negative predictive values for MODS were 100% and 78.7%, respectively for HIV infected patients and 100% and 82.1% for HIV negative patients. The median time to positive was 6 days (interquartile range 5–7), significantly faster than MGIT at 15.5 days (interquartile range 12–24), and LJ at 24 days (interquartile range 18–35 days) (P<0.01).

Conclusions

We have shown MODS to be a sensitive, rapid technique for the diagnosis of TBM with high sensitivity, ease of performance and low cost (0.53 USD/sample).  相似文献   
116.
Enzymes from cold-adapted species are significantly more active at low temperatures, even those close to zero Celsius, but the rationale of this adaptation is complex and relatively poorly understood. It is commonly stated that there is a relationship between the flexibility of an enzyme and its catalytic activity at low temperature. This paper gives the results of a study using molecular dynamics simulations performed for five pairs of enzymes, each pair comprising a cold-active enzyme plus its mesophilic or thermophilic counterpart. The enzyme pairs included α-amylase, citrate synthase, malate dehydrogenase, alkaline protease and xylanase. Numerous sites with elevated flexibility were observed in all enzymes; however, differences in flexibilities were not striking. Nevertheless, amino acid residues common in both enzymes of a pair (not present in insertions of a structure alignment) are generally more flexible in the cold-active enzymes. The further application of principle component analysis to the protein dynamics revealed that there are differences in the rate and/or extent of opening and closing of the active sites. The results indicate that protein dynamics play an important role in catalytic processes where structural rearrangements, such as those required for active site access by substrate, are involved. They also support the notion that cold adaptation may have evolved by selective changes in regions of enzyme structure rather than in global change to the whole protein. Figure Collective motions in Cα atoms of the active site of cold-active xylanase Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   
117.
118.
With the increasing threat of environmental toxicants including biological and chemical warfare agents, fabricating innovative biomimetic systems to detect these harmful agents is critically important. With the broad objective of developing such a biosensor, here we report the construction of a Saccharomyces cerevisiae strain containing the primary components of the mammalian olfactory signaling pathway. In this engineered yeast strain, WIF-1alpha, olfactory receptor signaling is coupled to green fluorescent protein expression. Using this 'olfactory yeast', we screened for olfactory receptors that could report the presence of the odorant 2,4-dinitrotoluene, an explosive residue mimic. With this approach, we have identified the novel rat olfactory receptor Olfr226, which is closely related to the mouse olfactory receptors Olfr2 and MOR226-1, as a 2,4-dinitrotoluene-responsive receptor.  相似文献   
119.
Protein metalloenzymes use various modes for functions for which metal-dependent global conformational change is required in some cases but not in others. In contrast, most ribozymes require a global folding that almost always precedes enzyme reactions. Herein we studied metal-dependent folding and cleavage activity of the 8-17 DNAzyme using single-molecule fluorescence resonance energy transfer. Addition of Zn2+ and Mg2+ induced folding of the DNAzyme into a more compact structure followed by a cleavage reaction, which suggests that the DNAzyme may require metal-dependent global folding for activation. In the presence of Pb2+, however, the cleavage reaction occurred without a precedent folding step, which suggests that the DNAzyme may be prearranged to accept Pb2+ for the activity. Neither ligation reaction of the cleaved substrates nor dynamic changes between folded and unfolded states was observed. These features may contribute to the unusually fast Pb2+-dependent reaction of the DNAzyme. These results suggest that DNAzymes can use all modes of activation that metalloproteins use.  相似文献   
120.
The major cause of hemodialysis vascular access dysfunction (HVAD) is the occurrence of stenosis followed by thrombosis at venous anastomosis sites due to the aggressive development of venous neointimal hyperplasia. Local delivery of antiproliferative drugs may be effective in inhibiting hyperplasia without causing systemic side effects. We have previously demonstrated that paclitaxel-coated expanded poly(tetrafluoroethylene) (ePTFE) grafts, by a dipping method, could prevent neointimal hyperplasia and stenosis of arteriovenous (AV) hemodialysis grafts, especially at the graft-venous anastomoses; however, large quntities of initial burst release have remained a problem. To achieve controlled drug release, paclitaxel (Ptx)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (Ptx-PLGA-NPs) were prepared by the emulsion-solvent evaporation method and then transferred to the luminal surface and inner part of ePTFE vascular grafts through our micro tube pumping and spin penetration techniques. Scanning electron microscope (SEM) images of various stages of Ptx-PLGA-NPs unequivocally showed that micro tube pumping followed by spin penetration effectively transferred Ptx-PLGA-NPs to the inner part, as well as the luminal surface, of an ePTFE graft. In addition, the in vitro release profiles of paclitaxel demonstrated that this new system achieved controlled drug delivery with a reduced initial burst release. These results suggest that loading of Ptx-PLGA-NPs to the luminal surface and the inner part of an ePTFE graft is a promising strategy to ultimately inhibit the development of venous neointimal hyperplasia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号