首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14705篇
  免费   1412篇
  国内免费   2482篇
  2024年   53篇
  2023年   254篇
  2022年   558篇
  2021年   949篇
  2020年   743篇
  2019年   866篇
  2018年   731篇
  2017年   583篇
  2016年   740篇
  2015年   1073篇
  2014年   1301篇
  2013年   1303篇
  2012年   1610篇
  2011年   1530篇
  2010年   934篇
  2009年   800篇
  2008年   898篇
  2007年   759篇
  2006年   624篇
  2005年   473篇
  2004年   365篇
  2003年   310篇
  2002年   239篇
  2001年   126篇
  2000年   113篇
  1999年   114篇
  1998年   89篇
  1997年   72篇
  1996年   62篇
  1995年   56篇
  1994年   46篇
  1993年   30篇
  1992年   33篇
  1991年   41篇
  1990年   27篇
  1989年   18篇
  1988年   15篇
  1987年   10篇
  1986年   6篇
  1985年   20篇
  1984年   5篇
  1983年   3篇
  1982年   4篇
  1981年   3篇
  1978年   2篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1965年   1篇
  1938年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
111.
Micro RNAs(mi RNAs) are vital regulators that repress gene expression in the cytoplasm in two main ways: m RNA degradation and translational inhibition. Several animal studies have shown that mi RNAs also target promoters, thereby activating expression.Whether this mi RNA action also occurs in plants is unknown. In this study, we demonstrated that several mi RNAs regulate target promoters in Arabidopsis thaliana. For example, mi R5658 was predominantly present in the nucleus and activated the expression of AT3 G25290 directly by binding to its promoter. Our observations suggest that this mode of action may be a general feature of plant mi RNAs, and thus provide insight into the vital roles of plant mi RNAs in the nucleus.  相似文献   
112.
113.
Western flower thrip, Frankliniella occidentalis (Pergande), is among the most economically important agricultural pests globally, attacking a wide range of vegetable and horticultural crops. In addition to causing extensive crop damage, the species is notorious for vectoring destructive plant viruses, mainly belonging to the genera Orthotospovirus, Ilarvirus, Alphacarmovirus and Machlomovirus. Once infected by orthotospoviruses, thrips can remain virulent throughout their lifespan and continue transmitting viruses to host plants when and wherever they feed. These irruptive viral outbreaks in crops will permanently disrupt functional integrated pest management systems, and typically require a remedial treatment involving insecticides, contributing to further development of insecticide resistance. To mitigate against this continuing cycle, the most effective management is early and comprehensive surveillance of the pest species and recognition of plant viruses in the field. This review provides information on the pest status of F. occidentalis, discusses the current global status of the viruses vectored by this thrip species, examines the mechanisms involved in transmitting virus‐induced diseases by thrips, and reviews different management strategies, highlighting the potential management tactics developed for various cropping systems. The early surveillance and the utilization of potential methods for control of both F. occidentalis and viruses are proposed.  相似文献   
114.
Splicing and alternative splicing in rice and humans   总被引:1,自引:0,他引:1  
Rice is a monocot gramineous crop, and one of the most important staple foods. Rice is considered a model species for most gramineous crops. Extensive research on rice has provided critical guidance for other crops, such as maize and wheat. In recent years, climate change and exacerbated soil degradation have resulted in a variety of abiotic stresses, such as greenhouse effects, lower temperatures, drought, floods, soil salinization and heavy metal pollution. As such, there is an extremely high demand for additional research, in order to address these negative factors. Studies have shown that the alternative splicing of many genes in rice is affected by stress conditions, suggesting that manipulation of the alternative splicing of specific genes may be an effective approach for rice to adapt to abiotic stress. With the advancement of microarrays, and more recently, next generation sequencing technology, several studies have shown that more than half of the genes in the rice genome undergo alternative splicing. This mini-review summarizes the latest progress in the research of splicing and alternative splicing in rice, compared to splicing in humans. Furthermore, we discuss how additional studies may change the landscape of investigation of rice functional genomics and genetically improved rice. [BMB Reports 2013; 46(9): 439-447]  相似文献   
115.
The NLR (nucleotide-binding domain leucine-rich repeat containing) proteins serve as regulators of inflammatory signaling pathways. NLRX1, a mitochondria-localized NLR protein, has been previously shown to negatively regulate inflammatory cytokine production activated via the MAVS-DDX58 (RIG-I) pathway. The literature also indicates that DDX58 has a negative impact upon autophagy. Consistent with the inhibitory role of NLRX1 on DDX58, our recent study indicates a role of NLRX1 in augmenting virus-induced autophagy. This effect is through its interaction with another mitochondrial protein TUFM (Tu translation elongation factor, mitochondrial, also known as EF-TuMT, COXPD4, and P43). TUFM also reduces DDX58-activated cytokines but augments autophagy. Additionally it interacts with ATG12–ATG5-ATG16L1 to form a molecular complex that modulates autophagy. The work shows that both NLRX1 and TUFM work in concert to reduce cytokine response and augment autophagy.  相似文献   
116.
Glutathione peroxidase 4 (GPX4) has been confirmed to inhibit ferroptosis in cancer cells, however, whether GPX4 serves as an oncogene is not clear. In this study, the expression of GPX4 and its influence to survival of patients with cancer were analyzed via public databases. Furthermore, the epigenetic regulation of GPX4 and the relation between GPX4 and chemoresistance of different anticancer drugs was also detected. Most importantly, cytological assays were performed to investigate the function of GPX4 in cancer cells. The results showed that GPX4 was higher expressed in cancer tissues than normal and was negatively associated with prognosis of patients. Furthermore, at upstream of GPX4 there was low DNA methylation sites and enhanced level of H3K4me3 and H3K27ac, indicating that high level of GPX4 in cancer may resulted from epigenetic regulation. Moreover, GPX4 was positively related to chemoresistance of anticancer drugs L-685458, lapatinib, palbociclib, and topotecan. In addition, GPX4 may potentially be involved in translation of protein, mitochondrial respiratory chain complex I assembly, electron transport oxidative phosphorylation, nonalcoholic fatty liver disease, and metabolic pathways. Finally, we detected that GPX4 inhibited ferroptosis in cancer cells, the inhibition of GPX4 via RSL3 could enhance the anticancer effect of cisplatin in vitro and in vivo. In conclusion, GPX4 acts as an oncogene and inhibits ferroptosis in cancer cells, the anticancer effect of cisplatin can be enhanced by GPX4 inhibition.  相似文献   
117.
The inhibitory effect of two chemokine decoy receptors (CDRs), DARC and D6, on breast cancer metastasis is mainly due to their ability to sequester pro-malignant chemokines. We hypothesized that genetic variants in the DARC and CCBP2 (encoding D6) genes may be associated with breast cancer progression. In the present study, we evaluated the genetic contributions of DARC and CCBP2 to metastatic potential, indicated by lymph node metastasis (LNM). Ten single-nucleotide polymorphisms (SNPs) (potentially functional SNPs and block-based tagging SNPs) in DARC and CCBP2 were genotyped in 785 breast cancer patients who had negative lymph nodes and 678 patients with positive lymph nodes. Two non-synonymous SNPs, rs12075 (G42D) in DARC and rs2228468 (S373Y) in CCBP2, were observed to be associated with LNM in univariate analysis and remained significant after adjustment for conventional clinical risk factors, with odds ratios (ORs) of 0.54 (95% confidence interval [CI], 0.37 to 0.79) and 0.78 (95% CI, 0.62 to 0.98), respectively. Additional functional experiments revealed that both of these significant SNPs could affect metastasis of breast cancer in xenograft models by differentially altering the chemokine sequestration ability of their corresponding proteins. Furthermore, heterozygous GD genotype of G42D on human erythrocytes had a significantly stronger chemokine sequestration ability than homozygous GG of G42D ex vivo. Our data suggest that the genetic variants in the CDR genes are probably associated with the varied metastatic potential of breast cancer. The underlying mechanism, though it needs to be further investigated, may be that CDR variants could affect the chemokine sequestration ability of CDR proteins.  相似文献   
118.
冯思远  赵文武  华廷  王涵 《生态学报》2021,41(20):7955-7964
“SDGs加速行动”是国际组织、政府部门、私营机构和其他利益攸关方为加快落实2030年可持续发展议程采取的全球行动。2019年联合国可持续发展目标峰会后,政府、国际组织、私营部门等提出了214项SDGs加速行动。2019年爆发的新型冠状病毒肺炎(Corona Virus Disease 2019,COVID-19)对实现可持续发展目标带来了系列影响,后疫情时代如何推动全球SDGs加速行动的实施成为重要的问题。对可持续发展评估报告(2019)和可持续发展目标加速行动等政策文件进行信息提取,建立加速行动匹配性指数模型和各国应对新冠疫情的恢复力指数模型,根据匹配性-恢复力分类体系将各国按照17项可持续发展目标分为9类,为推动后疫情时代全球可持续发展目标加速行动提供支撑。研究发现:(1)现有可持续发展目标加速行动的实施与区域需求不匹配,且这种不匹配的情况在COVID-19爆发前已经出现;(2)加速行动的实施受限于现有可持续发展水平和国家经济基础,区域关注的可持续发展目标与其自然地理位置和社会发展水平有着密切的关系,多边组织机构和其他利益攸关方需要在发展中国家大力推动可持续发展加速行动;(3)下一步实施加速行动需要加强国际间的合作,根据分类框架和可持续发展目标的关联关系,分重点推进加速行动的实施,完善可持续发展指标监测体系,分类设立后疫情时代不同时期的阶段目标,分阶段循序渐进,定期反馈追踪,以在2030年促进17项可持续目标的实现。  相似文献   
119.
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号