首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   542篇
  免费   93篇
  635篇
  2021年   6篇
  2016年   5篇
  2015年   13篇
  2014年   20篇
  2013年   15篇
  2012年   26篇
  2011年   24篇
  2010年   16篇
  2009年   21篇
  2008年   5篇
  2007年   18篇
  2006年   18篇
  2005年   16篇
  2004年   18篇
  2003年   22篇
  2002年   20篇
  2001年   11篇
  2000年   23篇
  1999年   17篇
  1998年   8篇
  1997年   11篇
  1995年   9篇
  1994年   8篇
  1993年   9篇
  1992年   22篇
  1991年   13篇
  1990年   14篇
  1989年   21篇
  1988年   13篇
  1987年   14篇
  1986年   8篇
  1985年   12篇
  1984年   9篇
  1983年   9篇
  1982年   10篇
  1980年   4篇
  1979年   7篇
  1978年   11篇
  1977年   10篇
  1976年   9篇
  1975年   10篇
  1974年   6篇
  1973年   7篇
  1972年   13篇
  1971年   6篇
  1970年   6篇
  1969年   4篇
  1968年   5篇
  1967年   3篇
  1966年   5篇
排序方式: 共有635条查询结果,搜索用时 15 毫秒
21.

Background

Cardiometabolic disease risk in US military recruits and the effects of military training have not been determined. This study examined lifestyle factors and biomarkers associated with cardiometabolic risk in US Army recruits (209; 118 male, 91 female, 23±5 yr) before, during, and after basic combat training (BCT).

Methodology/Principal Findings

Anthropometrics; fasting total (TC), high-density lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol; triglycerides (TG); glucose; and insulin were measured at baseline and every 3 wks during the 10 wk BCT course. At baseline, 14% of recruits were obese (BMI>30 kg/m2), 27% were cigarette smokers, 37% were sedentary, and 34% reported a family history of cardiometabolic disease. TC was above recommended levels in 8%, LDL in 39%, TG in 5%, and glucose in 8% of recruits, and HDL was below recommended levels in 33% of recruits at baseline. By week 9, TC decreased 8%, LDL 10%, TG 13%, glucose 6% and homeostasis model assessment of insulin resistance (HOMA-IR) 40% in men (P<0.05). In women, TC, LDL, glucose and HOMA-IR were decreased from baseline at weeks 3 and 6 (P<0.05), but were not different from baseline levels at week 9. During BCT, body weight declined in men but not women, while body fat percentage declined in both men and women (P<0.05).

Conclusions/Significance

At the start of military service, the prevalence of cardiometabolic risk in US military recruits is comparable to that reported in similar, college-aged populations. Military training appears to be an effective strategy that may mitigate risk in young people through improvements in lipid profiles and glycemic control.  相似文献   
22.
Little is known about the effect of exercise training on the expression of adiponectin receptor genes in peripheral blood mononuclear cells (PBMCs). In this study, we investigated the effects of aerobic training on the expression of AdipoR1 and AidpoR2 mRNAs in PBMCs, whole body insulin sensitivity, and circulating adiponectins in men. Thirty young men were randomly assigned to either a control (n=15) or an exercise (n=15) group. Subjects assigned to the exercise group underwent a 12-week jogging and/or running programme on a motor-driven treadmill at an intensity of 60%-75% of the age-based maximum heart rate with duration of 40 minutes per session and a frequency of 5 days per week. Two-way mixed ANOVA with repeated measures was used to test any significant time-by-group interaction effects for the measured variables at p=0.05. We found significant time-by-group interaction effects for waist circumference (p=0.001), VO2max (p<0.001), fasting insulin (p=0.016), homeostasis model assessment for insulin resistance (HOMA-IR) (p=0.010), area under the curve (AUC) for insulin response during the 75-g oral glucose tolerance test (p=0.002), high-molecular weight (HMW) adiponectin (p=0.016), and the PBMC mRNA levels of AdipoR1 (p<0.001) and AdipoR2 (p=0.001). The exercise group had significantly increased mRNA levels of AdipoR1 and AdipoR2 in PBMCs, along with increased whole body insulin sensitivity and HMW adiponectin, decreased waist circumference, and increased VO2max compared with the control group. In summary, the current findings suggest that exercise training modulates the expression of AdipoR1 and AdipoR2 mRNAs in PBMCs, implying that manipulation of the expression of these genes could be a potential surrogate for lifestyle intervention-mediated improvements of whole body insulin sensitivity and glucose homeostasis.  相似文献   
23.

Introduction

HIV prevalence among state prison inmates in the United States is more than five times higher than among nonincarcerated persons, but HIV transmission within U.S. prisons is sparsely documented. We investigated 88 HIV seroconversions reported from 1988–2005 among male Georgia prison inmates.

Methods

We analyzed medical and administrative data to describe seroconverters'' HIV testing histories and performed a case-crossover analysis of their risks before and after HIV diagnosis. We sequenced the gag, env, and pol genes of seroconverters'' HIV strains to identify genetically-related HIV transmission clusters and antiretroviral resistance. We combined risk, genetic, and administrative data to describe prison HIV transmission networks.

Results

Forty-one (47%) seroconverters were diagnosed with HIV from July 2003–June 2005 when voluntary annual testing was offered. Seroconverters were less likely to report sex (OR [odds ratio] = 0.02, 95% CI [confidence interval]: 0–0.10) and tattooing (OR = 0.03, 95% CI: <0.01–0.20) in prison after their HIV diagnosis than before. Of 67 seroconverters'' specimens tested, 33 (49%) fell into one of 10 genetically-related clusters; of these, 25 (76%) reported sex in prison before their HIV diagnosis. The HIV strains of 8 (61%) of 13 antiretroviral-naïve and 21 (40%) of 52 antiretroviral-treated seroconverters were antiretroviral-resistant.

Discussion

Half of all HIV seroconversions were identified when routine voluntary testing was offered, and seroconverters reduced their risks following their diagnosis. Most genetically-related seroconverters reported sex in prison, suggesting HIV transmission through sexual networks. Resistance testing before initiating antiretroviral therapy is important for newly-diagnosed inmates.  相似文献   
24.
The mitotic spindle assembly checkpoint arrests cells at metaphase by suppressing Cdc20, a protein required to trigger ubiquitination and consequent degradation of cyclin B. New evidence from Tang et al. appearing in the November 5th issue of Molecular Cell finds that one of the checkpoint proteins, Bub1, specifically phosphorylates Cdc20 to suppress APC/C activation.  相似文献   
25.
Centromere protein A (CENP-A) is a homolog of histone H3 that epigenetically marks the heterochromatin of chromosomes. CENP-A is a critical component of the cell cycle machinery that is necessary for proper assembly of the mitotic spindle. However, the role of CENP-A in the heart and cardiac progenitor cells (CPCs) has not been previously studied. This study shows that CENP-A is expressed in CPCs and declines with age. Silencing CENP-A results in a decreased CPC growth rate, reduced cell number in phase G2/M of the cell cycle, and increased senescence associated β-galactosidase activity. Lineage commitment is not affected by CENP-A silencing, suggesting that cell cycle arrest induced by loss of CENP-A is a consequence of senescence and not differentiation. CENP-A knockdown does not exacerbate cell death in undifferentiated CPCs, but increases apoptosis upon lineage commitment. Taken together, these results indicate that CPCs maintain relatively high levels of CENP-A early in life, which is necessary for sustaining proliferation, inhibiting senescence, and promoting survival following differentiation of CPCs.  相似文献   
26.
A current focus of research in neurobiology is to define themechanisms by which neurons reach their final destination andacquire their differentiated phenotype. An ideal model for thesestudies is the olfactory system, where nasal placodally derivedgonadotropin-releasing hormone (GnRH) neurons, olfactory receptorneurons and interneurons  相似文献   
27.
GCAP1 rescues rod photoreceptor response in GCAP1/GCAP2 knockout mice   总被引:6,自引:0,他引:6  
Visual transduction in retinal photoreceptors operates through a dynamic interplay of two second messengers, Ca(2+) and cGMP. Ca(2+) regulates the activity of guanylate cyclase (GC) and the synthesis of cGMP by acting on a GC-activating protein (GCAP). While this action is critical for rapid termination of the light response, the GCAP responsible has not been identified. To test if GCAP1, one of two GCAPs present in mouse rods, supports the generation of normal flash responses, transgenic mice were generated that express only GCAP1 under the control of the endogenous promoter. Paired flash responses revealed a correlation between the degree of recovery of the rod a-wave and expression levels of GCAP1. In single cell recordings, the majority of the rods generated flash responses that were indistinguishable from wild type. These results demonstrate that GCAP1 at near normal levels supports the generation of wild-type flash responses in the absence of GCAP2.  相似文献   
28.
Midzone microtubules of mammalian cells play an essential role in the induction of cell cleavage, serving as a platform for a number of proteins that play a part in cytokinesis. We demonstrate that PRC1, a mitotic spindle-associated Cdk substrate that is essential to cell cleavage, is a microtubule binding and bundling protein both in vivo and in vitro. Overexpression of PRC1 extensively bundles interphase microtubules, but does not affect early mitotic spindle organization. PRC1 contains two Cdk phosphorylation motifs, and phosphorylation is possibly important to mitotic suppression of bundling, as a Cdk phosphorylation-null mutant causes extensive bundling of the prometaphase spindle. Complete suppression of PRC1 by siRNA causes failure of microtubule interdigitation between half spindles and the absence of a spindle midzone. Truncation mutants demonstrate that the NH2-terminal region of PRC1, rich in alpha-helical sequence, is important for localization to the cleavage furrow and to the center of the midbody, whereas the central region, with the highest sequence homology between species, is required for microtubule binding and bundling activity. We conclude that PRC1 is a microtubule-associated protein required to maintain the spindle midzone, and that distinct functions are associated with modular elements of the primary sequence.  相似文献   
29.
The expression pattern of galectin-1 and galectin-3 in the human olfactory epithelium was investigated in relation to olfactory marker protein (OMP) using confocal laser immunofluorescence in human specimens and postmortem biopsies. OMP expression was found in olfactory receptor neurons (ORNs) in the olfactory mucosa and in fibers of the olfactory nerve crossing the submucous connective tissue. Galectin-1 was expressed in both the connective tissue of the nasal cavity and in the basal layer of the olfactory epithelium. In contrast, galectin-3 expression was limited to cells of the upper one-third of the olfactory epithelium. Expression of galectin-3 occurred in a subset of OMP-positive cells. However, between areas of galectin-1 and galectin-3 expression in the lower and upper portion of the epithelium, OMP-positive ORNs did not stain for both galectins. Considering the potential role of galectin-1 and galectin-3 in cell differentiation and maturation, the differential localization of galectins in the olfactory epithelium appears to be consistent with a significant role of these molecules in the physiological turnover of ORNs. Accepted: 20 December 1999  相似文献   
30.
Modulation of amyloid precursor protein (APP) metabolism plays a pivotal role in the pathogenesis of Alzheimer's disease. The phosphotyrosine-binding/protein interaction (PTB/PI) domain of X11alpha, a neuronal cytosolic adaptor protein, binds to the YENPTY sequence in the cytoplasmic carboxyl terminus of APP. This interaction prolongs the half-life of APP and inhibits Abeta40 and Abeta42 secretion. X11alpha/Mint-1 has multiple protein-protein interaction domains, a Munc-18 interaction domain (MID), a Cask/Lin-2 interaction domain (CID), a PTB/PI domain, and two PDZ domains. These X11alpha protein interaction domains may modulate its effect on APP processing. To test this hypothesis, we performed a deletion analysis of X11alpha effects on metabolism of APP(695) Swedish (K595N/M596L) (APP(sw)) by transient cotransfection of HEK 293 cells with: 1) X11alpha (X11alpha-wt, N-MID-CID-PTB-PDZ-PDZ-C), 2) amino-terminal deletion (X11alpha-DeltaN, PTB-PDZ-PDZ), 3) carboxyl-terminal deletion (X11alpha-DeltaPDZ, MID-CID-PTB), or 4) deletion of both termini (PTB domain only, PTB). The carboxyl terminus of X11alpha was required for stabilization of APP(sw) in cells. In contrast, the amino terminus of X11alpha was required to stimulate APPs secretion. X11alpha, X11alpha-DeltaN, and X11alpha-PTB, but not X11alpha-DeltaPDZ, were effective inhibitors of Abeta40 and Abeta42 secretion. These results suggest that additional protein interaction domains of X11alpha modulate various aspects of APP metabolism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号