首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   692篇
  免费   160篇
  852篇
  2021年   9篇
  2019年   6篇
  2017年   8篇
  2016年   10篇
  2015年   17篇
  2014年   15篇
  2013年   19篇
  2012年   19篇
  2011年   31篇
  2010年   16篇
  2009年   19篇
  2008年   17篇
  2007年   25篇
  2006年   24篇
  2005年   28篇
  2004年   27篇
  2003年   29篇
  2002年   27篇
  2001年   20篇
  2000年   35篇
  1999年   27篇
  1998年   19篇
  1997年   9篇
  1996年   7篇
  1994年   6篇
  1993年   8篇
  1992年   13篇
  1991年   21篇
  1990年   14篇
  1989年   14篇
  1988年   15篇
  1987年   10篇
  1986年   7篇
  1985年   13篇
  1984年   12篇
  1983年   16篇
  1982年   9篇
  1981年   9篇
  1980年   12篇
  1979年   19篇
  1978年   6篇
  1977年   15篇
  1976年   8篇
  1975年   14篇
  1974年   12篇
  1973年   15篇
  1972年   9篇
  1971年   12篇
  1969年   8篇
  1966年   9篇
排序方式: 共有852条查询结果,搜索用时 15 毫秒
61.
An AUG in an optimal nucleotide context is the preferred translation initiation site in eukaryotic cells. Interactions among translation initiation factors, including eIF1 and eIF5, govern start codon selection. Experiments described here showed that high intracellular eIF5 levels reduced the stringency of start codon selection in human cells. In contrast, high intracellular eIF1 levels increased stringency. High levels of eIF5 induced translation of inhibitory upstream open reading frames (uORFs) in eIF5 mRNA that initiate with AUG codons in conserved poor contexts. This resulted in reduced translation from the downstream eIF5 start codon, indicating that eIF5 autoregulates its own synthesis. As with eIF1, which is also autoregulated through translation initiation, features contributing to eIF5 autoregulation show deep evolutionary conservation. The results obtained provide the basis for a model in which auto- and cross-regulation of eIF5 and eIF1 translation establish a regulatory feedback loop that would stabilize the stringency of start codon selection.  相似文献   
62.
Flecainide (pKa 9.3, 99% charged at pH 7.4) and lidocaine (pKa 7.6-8.0, approximately 50% neutral at pH 7.4) have similar structures but markedly different effects on Na(+) channel activity. Both drugs cause well-characterized use-dependent block (UDB) of Na(+) channels due to stabilization of the inactivated state, but flecainide requires that channels first open before block develops, whereas lidocaine is believed to bind directly to the inactivated state. To test whether the charge on flecainide might determine its state specificity of Na(+) channel blockade, we developed two flecainide analogues, NU-FL (pKa 6.4), that is 90% neutral at pH 7.4, and a quaternary flecainide analogue, QX-FL, that is fully charged at physiological pH. We examined the effects of flecainide, NU-FL, QX-FL, and lidocaine on human cardiac Na(+) channels expressed in human embryonic kidney (HEK) 293 cells. At physiological pH, NU-FL, like lidocaine but not flecainide, interacts preferentially with inactivated channels without prerequisite channel opening, and causes minimal UDB. We find that UDB develops predominantly by the charged form of flecainide as evidenced by investigation of QX-FL at physiological pH and NU-FL investigated over a more acidic pH range where its charged fraction is increased. QX-FL is a potent blocker of channels when applied from inside the cell, but acts very weakly with external application. UDB by QX-FL, like flecainide, develops only after channels open. Once blocked, channels recover very slowly from QX-FL block, apparently without requisite channel opening. Our data strongly suggest that it is the difference in degree of ionization (pKa) between lidocaine and flecainide, rather than gross structural features, that determines distinction in block of cardiac Na(+) channels. The data also suggest that the two drugs share a common receptor but, consistent with the modulated receptor hypothesis, reach this receptor by distinct routes dictated by the degree of ionization of the drug molecules.  相似文献   
63.

Background

Translation is most often terminated when a ribosome encounters the first in-frame stop codon (UAA, UAG or UGA) in an mRNA. However, many viruses (and some cellular mRNAs) contain “stop” codons that cause a proportion of ribosomes to terminate and others to incorporate an amino acid and continue to synthesize a “readthrough”, or C-terminally extended, protein. This dynamic redefinition of codon meaning is dependent on specific sequence context.

Methodology

We describe two versatile dual reporter systems which facilitate investigation of stop codon readthrough in vivo in intact plants, and identification of the amino acid incorporated at the decoded stop codon. The first is based on the reporter enzymes NAN and GUS for which sensitive fluorogenic and histochemical substrates are available; the second on GST and GFP.

Conclusions

We show that the NAN-GUS system can be used for direct in planta measurements of readthrough efficiency following transient expression of reporter constructs in leaves, and moreover, that the system is sufficiently sensitive to permit measurement of readthrough in stably transformed plants. We further show that the GST-GFP system can be used to affinity purify readthrough products for mass spectrometric analysis and provide the first definitive evidence that tyrosine alone is specified in vivo by a ‘leaky’ UAG codon, and tyrosine and tryptophan, respectively, at decoded UAA, and UGA codons in the Tobacco mosaic virus (TMV) readthrough context.  相似文献   
64.
The cytochrome P450s (CYPs) are the major enzymatic detoxification and drug metabolism system. Recently, it has become clear that several CYP isoforms exhibit positive and negative homotropic cooperativity. However, the toxicological implications of allosteric kinetics have not been considered, nor understood. The allosteric kinetics are particularly enigmatic in several respects. In many cases, CYPs bioactivate substrates to more toxic products, thus making it difficult to rationalize a functional advantage for positive cooperativity. Also, CYPs exhibit cooperativity with many structurally diverse ligands, in marked contrast to the specificity observed with other allosteric systems. Here, kinetic simulations are used to compare the probabilistic time- and concentration-dependent integrated toxicity function during conversion of substrate to product for CYP models exhibiting Michaelis-Menten (non-cooperative) kinetics, positive cooperativity, or negative cooperativity. The results demonstrate that, at low substrate concentrations, the slower substrate turnover afforded by cooperative CYPs compared with Michaelis-Menten enzymes can be a significant toxicological advantage, when toxic thresholds exist. When present, the advantage results from enhanced "distribution" of toxin in two pools, substrate and product, for an extended period, thus minimizing the chance that either exceeds its toxic threshold. At intermediate concentrations, the allosteric kinetics can be a modest advantage or modest disadvantage, depending on the kinetic parameters. However, at high substrate concentrations associated with a high probability of toxicity, fast turnover is desirable, and this advantage is provided also by the cooperative enzymes. For the positive homotropic cooperativity, the allosteric kinetics minimize the probability of toxicity over the widest range of system parameters. Furthermore, this apparent functional cooperativity is achieved without specific molecular recognition that is the hallmark of "traditional" allostery.  相似文献   
65.
Partitioning and utilization of assimilated C and N were compared in nonnodulated, NO3-fed and nodulated, N2-fed plants of white lupin (Lupinus albus L.). The NO3 regime used (5 millimolar NO3) promoted closely similar rates of growth and N assimilation as in the symbiotic plants. Over 90% of the N absorbed by the NO3-fed plants was judged to be reduced in roots. Empirically based models of C and N flow demonstrated that patterns of incorporation of C and N into dry matter and exchange of C and N among plant parts were essentially similar in the two forms of nutrition. NO3-fed and N2-fed plants transported similar types and proportions of organic solutes in xylem and phloem. Withdrawal of NO3 supply from NO3-fed plants led to substantial changes in assimilate partitioning, particularly in increased translocation of N from shoot to root. Nodulated plants showed a lower (57%) conversion of C or net photosynthate to dry matter than did NO3-fed plants (69%), and their stems were only half as effective as those of NO3-fed plants in xylem to phloem transfer of N supplied from the root. Below-ground parts of symbiotic plants consumed a larger share (58%) of the plants' net photosynthate than did NO3-fed roots (50%), thus reflecting a higher CO2 loss per unit of N assimilated (10.2 milligrams C/milligram N) by the nodulated root than by the root of the NO3-fed plant (8.1 milligrams C/milligram N). Theoretical considerations indicated that the greater CO2 output of the nodulated root involved a slightly greater expenditure for N2 than for NO3 assimilation, a small extra cost due to growth and maintenance of nodule tissue, and a considerably greater nonassimilatory component of respiration in root tissue of the symbiotic plant than in the root of the NO3-fed plant.  相似文献   
66.
67.
Extracellular matrix components that flank the fissura prima, a primary surface infolding of the cerebellum in birds and mammals, were examined in the embryonic chick using light and transmission electron microscopy. Cerebella dissected from Day 10 embryos were perfused with a paraformaldehyde-glutaraldehyde-tannic acid primary fixative and sectioned in the sagittal plane through the mid-vermis. Ultrastructural analysis revealed a distinct, continuous basal lamina separating the organ parenchyma (epithelia) from pia mater (mesenchyme) at the fissure surface (arbitrarily labeled; fissure floor, folia wall, and folia apex). The basal lamina was significantly thicker (P < 0.001) at the fissure floor compared to that found at the folia wall, which was significantly thicker (P < 0.001) than that observed at the folia apex. Folds in the basal lamina were observed exclusively at the fissure floor. Surface-associated collagen fibrils were distributed in an aligned, relatively dense manner at the fissure floor, compared with fibrils observed in various orientations and widely separated or absent at the folia wall and folia apex. Metachromasia was more pronounced in the fissure floor than in either the folia wall or folia apex in methylene blue-stained tissue sections. Together, the thicker, folded basal lamina and densely aligned collagen fibrils at the fissure floor provide a chemical rationale for this color change. These findings suggest that the differential accumulation of extracellular matrix at the fissura prima is positioned to play a structural and/or biochemical role in the maintenance of this fold.  相似文献   
68.
Cultures of dissociated foetal and postnatal mouse gut gave rise to neurosphere-like bodies, which contained large numbers of mature neurons and glial cells. In addition to differentiated cells, neurosphere-like bodies included proliferating progenitors which, when cultured at clonal densities, gave rise to colonies containing many of the neuronal subtypes and glial cells present in the mammalian enteric nervous system. These progenitors were also capable of colonising wild-type and aganglionic gut in organ culture and had the potential to generate differentiated progeny that localised within the intrinsic ganglionic plexus. Similar progenitors were also derived from the normoganglionic small intestine of mice with colonic aganglionosis. Our findings establish the feasibility of expanding and isolating early progenitors of the enteric nervous system based on their ability to form distinct neurogenic and gliogenic structures in culture. Furthermore, these experiments provide the rationale for the development of novel approaches to the treatment of congenital megacolon (Hirschsprung's disease) based on the colonisation of the aganglionic gut with progenitors derived from normoganglionic bowel segments.  相似文献   
69.
Bacterial tmRNA mediates a trans-translation reaction, which permits the recycling of stalled ribosomes and probably also contributes to the regulated expression of a subset of genes. Its action results in the addition of a small number of C-terminal amino acids to protein whose synthesis had stalled and these constitute a proteolytic recognition tag for the degradation of these incompletely synthesized proteins. Previous work has identified pseudoknots and stem-loops that are widely conserved in divergent bacteria. In the present work an alignment of tmRNA gene sequences within 13 beta-proteobacteria reveals an additional sub-structure specific for this bacterial group. This sub-structure is in pseudoknot Pk2, and consists of one to two additional stem-loop(s) capped by stable GNRA tetraloop(s). Three-dimensional models of tmRNA pseudoknot 2 (Pk2) containing various topological versions of the additional sub-structure suggest that the sub-structures likely point away from the core of the RNA, containing both the tRNA and the mRNA domains. A putative tertiary interaction has also been identified.  相似文献   
70.
Regulation of the intracellular concentration of substrates is essential for the maintenance of a stable cellular environment. Diffusion and reaction processes supply and consume substrates within cells and determine their steady-state concentrations. To realistically represent these processes by computer simulation they must be modeled in three dimensions. Yet three-dimensional models are inherently computing intensive. This study describes a method, which substantially simplifies the modeling of diffusion into a polyhedral body (a cube), that was used as a model representation of a cell. The method is applied to a case study of oxygen diffusion into nitrogen-fixing, rhizobia-infected cells in legume nodules. The method involved generating a one-dimensional representation of the three-dimensional problem to provide a "surface area profile" of three-dimensional diffusion. The one-dimensional models were significantly easier to program, several orders of magnitude faster to solve and in this study were validated by assessing their results against those of comparable three-dimensional models of diffusion into the same body. The results show the one-dimensional method to be a close approximation of a three-dimensional source-sink problem with systematic differences below 10% for fractional oxygenation of leghemoglobin, cell respiration and nitrogenase activity. Larger differences between models (up to 45%) in the predicted average and innermost O(2)concentrations had no effects on the physiological conclusions of the study, but were attributed to the poorer resolution of the three- than the one-dimensional model, and to an inherent simplification in the derivation of the one-dimensional surface area profiles. The one-dimensional modeling approach was found to be a simple, yet powerful tool for the study of diffusion and reaction in biological systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号