首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   3篇
  23篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2011年   1篇
  2010年   3篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1971年   2篇
  1956年   1篇
  1955年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
11.
12.
We have developed seven microsatellite markers from an enrichment library of genomic DNA for an endangered species, Morus boninensis. A total of 112 of the 320 clones were found to have unique sequences with microsatellite repeats. Seven of 54 primer pairs revealed clear chromatograms and polymorphisms among 36 individuals sampled from three of the Bonin Islands. Seven to 17 alleles per locus were detected, and the expected heterozygosity without considering double reduction ranged from 0.429 to 0.819. These findings should be useful for those studying the conservation genetics of M. boninensis.  相似文献   
13.
Japanese house mice (Mus musculus molossinus) are thought to be a hybrid lineage derived from two prehistoric immigrants, the subspecies M. m. musculus of northern Eurasia and M. m. castaneus of South Asia. Mice of the western European subspecies M. m. domesticus have been detected in Japanese ports and airports only. We examined haplotype structuring of a 200 kb stretch on chromosome 8 for 59 mice from throughout Eurasia, determining short segments (≈ 370–600 bp) of eight nuclear genes (Fanca, Spire2, Tcf25, Mc1r, Tubb3, Def8, Afg3l1 and Dbndd1) which are intermittently arranged in this order. Where possible we identified the subspecies origin for individual gene alleles and then designated haplotypes for concatenated alleles. We recovered 11 haplotypes among 19 Japanese mice examined, identified either as ‘intact’ haplotypes derived from the subspecies musculus (57.9%), domesticus (7.9%), and castaneus (2.6%), or as ‘recombinant’ haplotypes (31.6%). We also detected recombinant haplotypes unique to Sakhalin. The complex nature of the recombinant haplotypes suggests ancient introduction of all three subspecies components into the peripheral part of Eurasia or complicated genomic admixture before the movement from source areas. ‘Intact’domesticus and castaneus haplotypes in other Japanese wild mice imply ongoing stowaway introductions. The method has general utility for assessing the history of genetic admixture and for disclosing ongoing genetic contamination.  相似文献   
14.
15.
To determine the origins of laboratory mice, the restriction patterns of mitochondrial DNAs (mtDNAs) from various strains were compared with those of relevant subspecies and/or races of mus musculus . In most strains and substrains of laboratory mice examined (50/55), the cleavage patterns were identical to those of the European subspecies M. m. domesticus . Those that varied include two sublines of NZB, the strain NZC, and the Japanese strain RR. The NZB and NZC patterns were identical to that of the European subspecies M. m. brevirostris , which itself has restriction patterns similar to M. m. domesticus . On the other hand, the RR pattern was identical to M. m. molossinus -like mice trapped in Western China and slightly different from Japanese M. m. molossinus . These findings suggest that the strains NZB and NZC stemmed from a European founder stock which differed from the ancestral stocks of other laboratory strains and that the ancestral mice of the RR strain had been transported from China to Japan. Therefore, most laboratory strains of mice are derived from the European subspecies M. m. domesticus while M. m. brevirostris and M. m. molossinus have made minor contributions. M. m. musculus does not appear to have made any contribution.  相似文献   
16.
Crude extracts of Bombyx mori brains can provoke adult development when injected into brain-removed dormant pupae of Bombyx mori and Samia Cynthia ricini. From this fact the prothoracicotropic hormone (PTTH) of Bombyx has long been thought to be species-nonspecifically active on Samia. Chemical fractionation of Bombyx brain or head extracts by fractional precipitation with acetone, Sephadex G-50 gel-filtration, and DEAE-Sepharose CL-6B chromatography, however, separated the fractions which activated Bombyx brainless pupae from those which activated Samia. Those results reveal the existence of two species-specific PTTHs.  相似文献   
17.
18.
PRODUCTION OF TRIPLOID AND GYNOGENETIC DIPLOID XENOPUS BY COLD TREATMENT   总被引:1,自引:1,他引:0  
Methods are described for producing triploids and gynogenetic diploids of Xenopus laevis. A high frequency of triploids was obtained when the eggs were refrigerated at 2-3 C for 15 min, starting 10–16 min after insemination. By this procedure, the suppression of second polar body emission was cytologically evident. The occurrence of triploidy was confirmed by chromosome and nucleolar counts, as well as microspectrophotomctric determination of nuclear DNA contents. Thus, more than 60% of the feeding tadpoles were triploids. Using the refrigeration method for inducing triploids, gynogenetic diploids were produced by inseminating eggs by sperm previously irradiated with ultraviolet light. Triploids and gynogenelic diploids thus obtained developed normally beyond metamorphosis, and have been growing well for more than 1.5 years.  相似文献   
19.
The Gelechioidea (>18 000 species), one of the largest superfamilies of Lepidoptera, are a major element of terrestrial ecosystems and include important pests and biological model species. Despite much recent progress, our understanding of the classification, phylogeny and evolution of Gelechioidea remains limited. Building on recent molecular studies of this superfamily and a recently revised family/subfamily classification, we provide an independent estimate of among‐family relationships, with little overlap in gene sample. We analysed up to five nuclear genes, totalling 6633 bp, for each of 77 gelechioids, plus up to 14 additional genes, for a total of 14 826 bp, in 45 of those taxa and all 19 outgroup taxa. Our maximum‐likelihood (ML) analyses, like those of previous authors, strongly support monophyly for most multiply‐sampled families and subfamilies, but very weakly support most relationships above the family level. Our tree looks superficially divergent from that of the most recent molecular study of gelechioids, but when the previous tree is re‐rooted to accord maximally with ours, the two phylogenies agree entirely on the deepest‐level divergences in Gelechioidea, and strongly though incompletely on among‐family relationships within the major groups. This concordance between independent studies is evidence that the groupings (or at least the unrooted branching order) are probably accurate, despite the low bootstrap values. After re‐rooting, both trees divide the families into three monophyletic groups: a ‘Gelechiid Assemblage,’ consisting of Gelechiidae and Cosmopterigidae; a ‘Scythridid Assemblage,’ consisting of Stathmopodidae, Scythrididae, Blastobasidae, Elachistidae, Momphidae, Coleophoridae and Batrachedridae; and a ‘Depressariid Assemblage,’ consisting of Autostichidae, Xyloryctidae, Lecithoceridae, Oecophoridae, Depressariidae and Lypusidae. Within the largest family, Gelechiidae, our results strongly support the pairing of Anomologinae with Gelechiinae, in accordance with a recent study of this family. Relationships among the other subfamilies, however, conflict moderately to strongly between studies, leaving the intrafamily phylogeny unsettled. Within the ‘Scythridid Assemblage,’ both trees support an ‘SSB clade’ consisting of Blastobasidae + (Scythrididae + Stathmopodidae), strongly resolved only in our results. Coleophoridae + Batrachedridae is supported, albeit weakly, in both trees, and only Momphidae differ in position between studies. Within the ‘Depressariid Assemblage,’ both trees support an ‘AXLO’ clade consisting of Autostichidae, Xyloryctidae, Lecithoceridae and Oecophoridae. The monophyly of this clade and relationships therein are supported weakly in previous results but strongly in ours. The recently re‐defined family Depressariidae is paraphyletic in our tree, but the evidence against depressariid monophyly is very weak. There is moderate support for a core group of Depressariidae consisting, among the seven subfamilies we sampled, of Depressariinae, Aeolanthinae and Hypertrophinae. We show that gelechioids have a higher total number and percentage of species that are saprophagous as larvae than any other apoditrysian superfamily, that saprophagy is concentrated primarily in the ‘AXLO clade,’ and that the ancestral gelechioid condition was probably feeding on live plants. Among the living‐plant feeders, concealed external feeding was probably the ancestral state. The multiple origins of internal feeding of various kinds, including leaf mining (otherwise almost unknown in Apoditrysia), are restricted mostly to the Scythridid and Gelechiid Assemblages. The traits that predispose or permit lineages to adopt these unusual life histories are worthy of study.  相似文献   
20.
Many insects possess conspicuous external circular ring markings that resemble the eye of a vertebrate. These ‘eyespots’ typically function to startle or otherwise deter predators, but few studies have examined how eyespots have evolved. We study the evolution of the posterior larval eyespot in the charismatic New World hawkmoth genus Eumorpha. While Eumorpha has a range of posterior larval eyespot shapes and sizes, little is known of how this trait has evolved because phylogenetic relationships of Eumorpha remain largely unknown. In this study, we included 62 individuals from 23 of 26 described Eumorpha species, and sequenced four genes (CAD, EF, Wingless and COI), totaling 3773 base pairs. Maximum likelihood and Bayesian phylogenetic methods produced largely congruent trees with well‐supported relationships. Our analyses reveal that Eumorpha probably had an ancestor with a posterior larval eyespot and that the eyespot was subsequently lost in at least three lineages. Eumorpha appears to have originated in Central and South America and expanded its distribution to North America.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号