首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   348篇
  免费   5篇
  2014年   4篇
  2012年   4篇
  2011年   10篇
  2010年   9篇
  2009年   10篇
  2008年   7篇
  2007年   6篇
  2006年   4篇
  1998年   6篇
  1997年   8篇
  1996年   4篇
  1995年   6篇
  1992年   5篇
  1991年   4篇
  1990年   6篇
  1989年   7篇
  1988年   5篇
  1987年   4篇
  1986年   4篇
  1985年   4篇
  1983年   5篇
  1981年   12篇
  1980年   3篇
  1979年   4篇
  1978年   9篇
  1977年   6篇
  1976年   4篇
  1975年   7篇
  1974年   6篇
  1973年   8篇
  1972年   12篇
  1971年   16篇
  1970年   5篇
  1969年   3篇
  1968年   8篇
  1965年   3篇
  1959年   6篇
  1958年   8篇
  1957年   8篇
  1956年   5篇
  1955年   7篇
  1954年   7篇
  1953年   4篇
  1952年   5篇
  1951年   3篇
  1950年   4篇
  1949年   3篇
  1948年   6篇
  1946年   3篇
  1936年   3篇
排序方式: 共有353条查询结果,搜索用时 11 毫秒
71.
72.
Diurnal changes in non-structural carbohydrates, leaf extension,and leaf cavity CO2 concentrations were determined. Before thestart of the photoperiod total non-structural carbohydrate beginsto accumulate due to an accumulation of glucose and fructose.After the start of the photoperiod total carbohydrate continuesto accumulate but at this time this is due to increasing sucroselevels. The pre- and early-photoperiod accumulation is finite,and a reduction of accumulated carbohydrate occurs before amore sustained increase commences. Utilization of accumulatedcarbohydrate commences at least 3 h before the end of the photoperiod.Leaf extension is constant throughout the dark and photoperiod.The CO2 concentration within the leaf cavity is high at 0·3%,but declines before the start of the photoperiod and immediatelyafter ‘lights-on’ to about 0·06%, this concentrationbeing maintained throughout the day. A slow accumulation ofinternal CO2 occurs after the end of the photoperiod.  相似文献   
73.
Photosynthesis in Wood   总被引:2,自引:0,他引:2  
The capacity for photosynthesis, measured as light enhanced 14CO2 uptake, was demonstrated in the wood of first and fourth year twigs of Betula pendula Roth, Populus tremuloides Michx., Syringa vulgaris L., and Tilia Americana L, but not in Gleditschia triacanthos L. In Betula and Syringa, but not in the others, photosynthesis occurred in the secondary xylem as well as in the primary xylem.  相似文献   
74.
Abstract The South American tipulid taxa Elnoretta, Euvaldiviana and Valdiviana are revised. Type material of all described species was examined. Euvaldiviana is raised from subgeneric to generic rank. The synonymy of Valdiviana synempora and V. neuquenensis is established. Details of the genitalia of the five recognized species as well as external characters are illustrated. A phylogeny is presented of a monophyletic group containing Elnoretta, Euvaldiviana and Valdiviana together with the genera Acracantha (Australia) and Austrotipula (New Zealand).  相似文献   
75.
The extent to which increased atmospheric nitrogen (N) deposition will drive changes in plant productivity and species composition over the next century will depend on how other influential global change factors, such as climate warming, affect the N retention of ecosystems. We examined the interactive effects of simulated climate warming and N deposition on the recoveries of 15N‐labeled ammonium and 15N‐labeled nitrate tracers added as a pulse to grass‐dominated, temperate old‐field plots at spring thaw. In addition to the year‐round warming treatment, a winter‐only warming treatment was applied to a set of plots to explore the contribution of this component of climate warming to the overall warming effect. By the end of the plant growing season, there was approximately twice as much 15N enrichment in the plant roots and bulk soil from 15NH4+‐addition plots than from 15NO3?‐addition plots, but there were no effects of warming or N fertilization on 15N recovery. Over winter, approximately half of the excess 15N present in plant shoots was lost, which corresponded with large 15N losses from bulk soil in N fertilized plots and large 15N increases in bulk soil in nonfertilized plots. By the next spring, there was decreased 15N recovery in plants in response to N fertilization, which was largely offset by increases in plant 15N recovery in response to year‐round warming. However, 15N retention in bulk soil, where the major part of the 15N label was recovered, was approximately 40% higher in nonfertilized plots than in N fertilized plots. Overall, our results indicate that climate warming increases plant N sequestration in this system but this effect is overwhelmed by the overall effect of nitrogen deposition on ecosystem N losses.  相似文献   
76.
Anticipated increases in precipitation intensity due to climate change may affect hydrological controls on soil N2O fluxes, resulting in a feedback between climate change and soil greenhouse gas emissions. We evaluated soil hydrologic controls on N2O emissions during experimental water table fluctuations in large, intact soil columns amended with 100 kg ha?1 KNO3‐N. Soil columns were collected from three landscape positions that vary in hydrological and biogeochemical properties (N= 12 columns). We flooded columns from bottom to surface to simulate water table fluctuations that are typical for this site, and expected to increase given future climate change scenarios. After the soil was saturated to the surface, we allowed the columns to drain freely while monitoring volumetric soil water content, matric potential and N2O emissions over 96 h. Across all landscape positions and replicate soil columns, there was a positive linear relationship between total soil N and the log of cumulative N2O emissions (r2= 0.47; P= 0.013). Within individual soil columns, N2O flux was a Gaussian function of water‐filled pore space (WFPS) during drainage (mean r2= 0.90). However, instantaneous maximum N2O flux rates did not occur at a consistent WFPS, ranging from 63% to 98% WFPS across landscape positions and replicate soil columns. In contrast, instantaneous maximum N2O flux rates occurred within a narrow range (?1.88 to ?4.48 kPa) of soil matric potential that approximated field capacity. The relatively consistent relationship between maximum N2O flux rates and matric potential indicates that water filled pore size is an important factor affecting soil N2O fluxes. These data demonstrate that matric potential is the strongest predictor of the timing of N2O fluxes across soils that differ in texture, structure and bulk density.  相似文献   
77.
Swards of Dactylis glomerata cultivars (cvs) KM2 and Lutetia and of Lolium perenne cvs Aurora and Vigor were grown under full irrigation or prolonged summer drought (80 d) in a field experiment in the South of France.
After irrigation was withheld, leaf extension rates of all cvs fell by 90% within 9–12 d, and rapid scorching of laminae followed. Tiller mortality at the end of the drought was very different in the cocksfoot cvs (4% for KM2 and 76% for Lutetia) and intermediate (41%) for both ryegrass cvs. Following re-watering, rates of herbage regrowth were closely correlated with tiller survival. Measured minerals contributed c . 0·52 MPa to osmotic potential in all treatments, whereas water-soluble carbohydrates (WSC) contributed 0·25 MPa under irrigation and 0·46 MPa during drought.
There was no systematic difference between the two species for summer survival under severe drought, but large differences between the cocksfoot cvs. The traits most strongly associated with superior survival were: (a) a deep root system and greater water uptake at depth; (b) low water and osmotic potentials in surviving laminae, i.e. better tolerance to dehydration; (c) large pool-size of WSC reserves (fructans having degree of polymerization >4) in entire tiller bases (stubble); (d) low accumulation of proline in stubble; (e) rapid nitrogen uptake after rewatering.  相似文献   
78.
Skeletal banding has been found in the deep-water scleractinian coral Desmophyllum cristagalli , an important animal in studies of climate change. This banding pattern sheds light on skeletogenesis and suggests methods by which the record of climate change contained within the coral skeletons may be interpreted. A central wall built of trabeculae forms the interior of the septa and rings the theca. Lamellae form a sheath over the trabecular frame, showing continuity from thecal edge to septum. Skeletal bands are added by the tissue layer, which overlaps and seals the internal coral and upper portion of the outer theca. Truncated inner bands on the outer theca indicate a pattern of skeletal deposition and dissolution dependent on the presence or absence of the live tissue layer. A long-term record will be difficult to collect from D. cristagalli since lamellae are less than 10 μm thick and band position is unpredictable. Density banding in shallow-water coral skeletons has long been recognized as a valuable paleo-oceanographic tool, and deep-water corals are now being used to reconstruct deep-ocean environments. Pattern of skeletal growth must be carefully considered if deep-water corals are to be used as proxy climate recorders.  相似文献   
79.
Evolutionary Modifications of the Spiralian Developmental Program   总被引:2,自引:1,他引:1  
SYNOPSIS. The Spiralia, an assemblage of phyla united by theirstereotypic pattern of early embryonic cell divisions (spiralcleavage), is an interesting group in which to investigate theevolution of development. This paper examines modificationsof developmental mechanisms within the Spiralia with emphasison the basallybranching forms. Although demonstrating a notabledegree of evolutionary conservation, the equal quartet cleavagepattern, which appears to be the ancestral condition, nonethelessexhibits modifications within the various spiralian groups,such as unequal cleavage, changes in cell size and rate of division,formation of two rather than four quadrants (duet spiral cleavage),and in extreme cases the loss of any trace of the spiral pattern.While the cell lineages of spiralians are remarkably conserved,one can discern evolutionary changes, for example in the cellsthat give rise to mesodenn. Studies of blastomere specificationin many spiralian groups and analyses of axis determinationindicate that embryos with equal versus unequal cleavage typicallyuse different determinative mechanisms to establish cell fatesand the dorsoventral axis. These properties are establishedearly in species exhibiting unequal cleavage. While previousexperiments suggested that equal cleavage was associated withlate specification, there is now evidence of precocious specificationof quadrant fates in some equal-cleaving species, such as thenemerteans and the polyclad turbellarians  相似文献   
80.
  • 1 The objective of this study, which is based on forty-two species of hydrophytes and helophytes, is to investigate: (i) relationships among species traits; (ii) habitat utilization by species; (iii) the relationship between species traits and habitat utilization; (iv) trends in species traits in the framework of spatial–temporal habitat variability, and if trends match predictions from the river habitat templet; and (v) trends in species richness in the framework of spatial–temporal habitat variability, and if trends match predictions of the patch dynamics concept.
  • 2 Two data sets were used for this analysis: species traits (mainly reproductive and morphological characteristics) were documented from the literature; and species distribution across eight habitat types was from field surveys conducted in the floodplain of the Upper Rhone River, France. This information was structured by a fuzzy coding technique and analysed by ordination methods.
  • 3 Several species traits, which are related to disturbances and reflect resistance (e.g. attachment to soil or substrate) or resilience (e.g. potential for regeneration of an individual), are closely related for aquatic macrophytes.
  • 4 Habitat utilization by aquatic macrophytes separates the habitat types along a gradient of connectivity with the main channel, which corresponds to a gradient in flood disturbance frequency and the permanence of the different water-bodies.
  • 5 The relationship between species traits and habitat utilization is highly significant, indicating that a particular set of habitat types is used by taxa with a particular set of species trait modalities.
  • 6 Observations in one habitat templet (in which scaling of the templet is primarily based on water level fluctuations for the temporal variability axis and on substrate characteristics for the spatial variability axis) generally do not support predictions on trends in species traits but do support predictions on trends in species richness.
  • 7 Observations in an alternative habitat templet (in which scaling of the templet is based on frequency of flood scouring for the temporal variability axis and on heterogeneity of the substrate for the spatial variability axis) support theoretical predictions on trends for about half of the species traits for which predictions were available. However, trends in species richness in this alternative habitat templet are only partly in agreement with predictions.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号