首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16749篇
  免费   1301篇
  国内免费   8篇
  2023年   162篇
  2022年   101篇
  2021年   248篇
  2020年   224篇
  2019年   219篇
  2018年   509篇
  2017年   488篇
  2016年   525篇
  2015年   452篇
  2014年   523篇
  2013年   995篇
  2012年   1321篇
  2011年   1463篇
  2010年   780篇
  2009年   533篇
  2008年   1172篇
  2007年   1145篇
  2006年   1123篇
  2005年   964篇
  2004年   952篇
  2003年   922篇
  2002年   776篇
  2001年   193篇
  2000年   271篇
  1999年   160篇
  1998年   112篇
  1997年   78篇
  1996年   82篇
  1995年   95篇
  1994年   82篇
  1993年   84篇
  1992年   115篇
  1991年   84篇
  1990年   69篇
  1989年   56篇
  1988年   60篇
  1987年   50篇
  1986年   41篇
  1985年   59篇
  1984年   66篇
  1983年   56篇
  1982年   63篇
  1981年   56篇
  1980年   61篇
  1979年   37篇
  1978年   48篇
  1977年   47篇
  1976年   41篇
  1975年   47篇
  1974年   36篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Summary DNA-DNA hybridization was used to measure the average genomic divergence among the four chromosomal species of the Eurasian mole rats belonging to theSpalax ehrenbergi complex (Rodentia: Spalacidae). The percent nucleotide substitutions in the single-copy nuclear DNA among the species ranged from 0 to 5%, suggesting that speciation has occurred with minor genomic changes in these animals. The youngest chromosomal species appear to differ by 0.2–0.6% base pair mismatch, which is only between one and three base differences in a 500-bp fragment. The interspecific values of percent nucleotide differences permit the recognition of two well-separated speciation events in theS. ehrenbergi complex, the older (of Lower Pleistocene age) having isolated the chromosomal species 2n=54 before the divergence of the three other species.DNA-DNA hybridization was also used to compare the Spalacinae (Eurasian mole rats), Murinae (Old World rats and mice), and Arvicolinae (voles and lemmings). These data enabled us to estimate the time of divergence of the spalacids at ca. 19 million years ago. The dates of divergence among the other rodent lineages, as predicted by DNA hybridization results, agree well with paleontological data. These dates of divergence are obtained by the relation between geological time and single-copy nuclear DNA change, a relation that was calibrated by Catzeflis et al. (1987) through the use of fossil Arvicolinae and Murinae data.  相似文献   
102.
103.
The occurrence of photoinhibition of photosynthesis in leaves of a willow canopy was examined by measuring the chlorophyll-a fluorescence ratio of F V/F M (FM is the maximum fluorescence level of the induction curve, and FV is the variable fluorescence, F V=F MF 0, where F0 is the minimal fluorescence). The majority of the leaves situated on the upper parts of peripheral shoots showed an afternoon inhibition of this ratio on clear days. This was the consequence of both a decrease in F M and a rise in F O. In the same leaves the diurnal variation in intercepted photosynthetic photon flux density (PPFD) was monitored using leaf-mounted sensors. Using the multivariate method, partial least squares in latent variables, it is shown that the dose of PPFD, integrated and linearly weighted over the last 6-h period, best predicts photoinhibition. Photoinhibition occurred even among leaves that did not intercept PPFDs above 1000 mol·m–2·s–1. Exposure of leaves to a standard photoinhibitory treatment demonstrated that the depression in the F V/F M ratio was paralleled by an equal depression in the maximal quantum yield of CO2 uptake and a nearly equal depression in the rate of bending (convexity) of the light-response curve of CO2 uptake. As a result, the rate of net photosynthesis is depressed over the whole natural range of PPFD. By simulating the daily course in the rate of net photosynthesis, it is estimated that in the order of one-tenth of the potential carbon gain of peripheral willow shoots is lost on clear days as a result of photoinhibition. This applies to conditions of optimal temperatures. Photoinhibition is even more pronounced at air temperatures below 23° C, as judged from measurements of the FV/FM ratio on clear days: the afternoon inhibition of this ratio increased in a curvilinear manner from 15% to 25% with a temperature decrease from 23° to 14° C.Abbreviations and Symbols FO minimum fluorescence - FV variable fluorescence - FM maximum fluorescence - PLS partial least squares in latent variables - PPFD photosynthetic photon flux density - VPD water vapour-pressure deficit This study was supported by the Swedish Natural Science Research Council. We are indebted to Dr. Jerry Leverenz (Department of Plant Physiology, University of Umeå, Sweden) for guidance with the modelling of the photosynthesis data.  相似文献   
104.
The activities of peroxide-detoxifying enzymes such as superoxide dismutase (SOD), glutathione peroxidase, glutathione reductase, and catalase were measured in the nervous system of neurological dysmyelinating mutants: quaking (Qk), shiverer (Shi), and trembler (Tr) mice. Cu/Zn-SOD activity was higher in the cerebellum of Qk and Shi mice (by 53% and 106%, respectively) in comparison with controls, but it was the same in the cerebellum of Tr mice and their corresponding controls. In contrast, there was no difference in the level of Cu/Zn-SOD activity in the cerebrum of Qk, Shi, and Tr mice and their respective controls. Mn-SOD activity was the same among all the mutants compared to control animals in both cerebrum and cerebellum. In Shi cerebellum, glutathione peroxidase and glutathione reductase activities were slightly decreased (a 21.6% and a 13.2% diminution, respectively), whereas catalase activity in cerebrum and cerebellum was the same among mutants and control mice. In the sciatic nerve from Tr mice, all the enzymatic activities were enhanced: sixfold increase for total SOD, and 2.4-fold, 3.5-fold, and 1.8-fold increase for glutathione peroxidase, glutathione reductase, and catalase, respectively.  相似文献   
105.
The ubiquitous grapevine-associated octopine/cucumopine Ti plasmids of biotype III Agrobacterium tumefaciens strains carry two T regions, TA and TB, with a complex oncogene arrangement. Within the octopine/cucumopine group, two main strain types were identified: large TA strains with a TA region resembling the TL region of the biotype I octopine strain Ach5 and small TA strains with a similar T region organization as the large TA strains but with a large internal TA deletion. Structural and functional studies of the representative large TA strain Tm4 revealed six oncogenes. Each oncogene was inserted in a disarmed vector and tested for biological activity using the corresponding oncogenes of Ach5 as standards. Five Tm4 oncogenes, TA-iaaM, T-ipt, T-6b, TB-iaaH and TB-iaaM, were shown to be active, the IS-interrupted TA-iaaH gene was inactive. To study the role of each gene in the pTiTm4 context, several single and multiple pTiTm4 mutations were constructed. It was shown that whereas TA-iaaM and TB-iaaH are essential for tumour formation on grapevine, T-ipt, T-6b and TB-iaaM are not. The avirulence of the TA-iaaM - mutant was shown to be due to an inhibitory effect of the T-ipt gene, since a TA-iaaM - /T-ipt - double mutant was fully virulent. We conclude that the TA-iaaM gene of large TA strains is specifically required to counteract the tumour growth inhibiting activity of the T-ipt gene. Both TA-iaaM and T-ipt are absent from the small TA strains. A model on the roles and interactions of the different oncogenes in large TA and small TA strains is presented.  相似文献   
106.
In the last few years our knowledge of the structure and function of Photosystem II in oxygen-evolving organisms has increased significantly. The biochemical isolation and characterization of essential protein components and the comparative analysis from purple photosynthetic bacteria (Deisenhofer, Epp, Miki, Huber and Michel (1984) J Mol Biol 180: 385–398) have led to a more concise picture of Photosystem II organization. Thus, it is now generally accepted that the so-called D1 and D2 intrinsic proteins bind the primary reactants and the reducing-side components. Simultaneously, the nature and reaction kinetics of the major electron transfer components have been further clarified. For example, the radicals giving rise to the different forms of EPR Signal II have recently been assigned to oxidized tyrosine residues on the D1 and D2 proteins, while the so-called Q400 component has been assigned to the ferric form of the acceptor-side iron. The primary charge-separation has been meaured to take place in about 3 ps. However, despite all recent major efforts, the location of the manganese ions and the water-oxidation mechanism still remain largely unknown. Other topics which lately have received much attention include the organization of Photosystem II in the thylakoid membrane and the role of lipids and ionic cofactors like bicarbonate, calcium and chloride. This article attempts to give an overall update in this rapidly expanding field.  相似文献   
107.
Leaf decomposition of the exotic evergreen Eucalyptus globulus (eucalyptus), and three native deciduous tree species, Alnus glutinosa (alder), Castanea sativa (chestnut) and Quercus faginea (oak), was compared in a second order stream in Central Portugal. Changes in dry weight, nitrogen and polyphenolic compounds and microbial colonization were periodically assessed for three months.Negative exponential curves fit the leaf weight loss with time for all leaf species. Mass loss rate was in the order alder (K = 0.0161) > chestnut (K = 0.0079) > eucalyptus (K = 0.0068) > oak (K = 0.0037). Microbial colonization followed the same pattern as breakdown rates. Evidence of fungal colonization was observed in alder after 3 days in the stream, whereas it took 21 days in oak leaves to have fungal colonization. Fungal diversity was leaf species-dependent and increased with time. In all cases, percent nitrogen per unit leaf weight increased, at least, at the initial stages of decay while soluble polyphenolics (expressed as percentage per unit leaf weight) decreased rapidly in the first month of leaves immersion.Intrinsic factors such as nitrogen and polyphenolic content may explain differences in leaf decomposition. The possible incorporation of eucalyptus litter into secondary production in a reasonable time span is suggested, although community balance and structure might be affected by differences in allochthonous patterns determined by eucalyptus monocultures.  相似文献   
108.
To test the hypothesis whether afforestation with Eucalyptus globulus affects litter dynamics in streams and the structure of macroinvertebrate aquatic communities, we compared streams flowing through eucalyptus and deciduous forests, paying attention to: (i) litterfall dynamics, (ii) accumulation of organic matter, (iii) processing rates of two dominant leaf species: eucalyptus and chestnut, and (iv) macroinvertebrate community structure. The amount of allochthonous inputs was similar in both vegetation types, but the seasonality of litter inputs differed between eucalyptus and natural deciduous forests. Eucalyptus forest streams accumulated more organic matter than deciduous forest streams. Decomposition of both eucalyptus and chestnut leaf litter was higher in streams flowing through deciduous forests. The eucalyptus forest soils were highly hydrophobic resulting in strong seasonal fluctuations in discharge. In autumn the communities of benthic macroinvertebrates of the two stream types were significantly different. Deciduous forest streams contained higher numbers of invertebrates and more taxa than eucalyptus forest streams. Mixed forest streams (streams flowing through eucalyptus forests but bordered by deciduous vegetation) were intermediate between the two other vegetation types in all studied characteristics (accumulation of benthic organic matter, density and diversity of aquatic invertebrates). These results suggest that monocultures of eucalyptus affect low order stream communities. However, the impact may be attenuated if riparian corridors of original vegetation are kept in plantation forestry.  相似文献   
109.
NMDA, the specific agonist of glutamate gated ion channels permeable to calcium, is implicated as a causal factor in the pathogenesis of several neurobiological disorders such as stroke, seizures, ischemia, and chronic neurodegenerative disease. On the other hand, evidence on the roles of oxidative mechanisms involved in NMDA-induced neurotoxicity is accumulating. In this study, we have used chemiluminescence measurements as an easy, rapid and sensitive assay to investigate the effects of NMDA and oxidative stress on brain cell vulnerability. Rat brain homogenates were incubated with increasing concentrations of glutamate and NMDA. Production of reactive oxygen species was followed by single photon emission measurements using the specific enhancers luminol and lucigenin. Increases in emission were observed at excitotoxic concentrations of glutamate and NMDA. Other parameters of oxidative stress such as diene conjugates, TBARS and carbonyl groups were also investigated. Our results indicated that chemiluminescence measurements may be used to study involvement of oxidative stress in neurotoxicity.  相似文献   
110.
Summary Immature cotyledons and embryo axes of sainfoin were cultured on Murashige and Skoog (MS) media supplemented with various concentrations of 6-benzylaminopurine (BAP) and a-naphthaleneacetic acid (NAA) to induce adventitious shoot regeneration. The highest frequency of shoot regeneration occurred following an initial callus growth on a MS medium containing 0.5 mg/l BAP and 2 mg/l NAA. Immature embryo axes showed higher regeneration capacity than immature cotyledons, however, shoot elongation was best achieved on immature cotyledons. Regenerated shoots were excised and rooted in half strength MS medium with 1 mg/l indole-butyric acid (IBA) or 1 mg/l NAA. The rooted plantlets were finally transferred to compost.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号