全文获取类型
收费全文 | 636111篇 |
免费 | 67858篇 |
国内免费 | 467篇 |
专业分类
704436篇 |
出版年
2016年 | 6304篇 |
2015年 | 8707篇 |
2014年 | 10412篇 |
2013年 | 14687篇 |
2012年 | 16464篇 |
2011年 | 16846篇 |
2010年 | 11155篇 |
2009年 | 10597篇 |
2008年 | 15026篇 |
2007年 | 15658篇 |
2006年 | 14980篇 |
2005年 | 14492篇 |
2004年 | 14290篇 |
2003年 | 13815篇 |
2002年 | 13693篇 |
2001年 | 30556篇 |
2000年 | 31148篇 |
1999年 | 24454篇 |
1998年 | 7927篇 |
1997年 | 8398篇 |
1996年 | 7824篇 |
1995年 | 7361篇 |
1994年 | 7282篇 |
1993年 | 7372篇 |
1992年 | 19831篇 |
1991年 | 19505篇 |
1990年 | 18786篇 |
1989年 | 18370篇 |
1988年 | 17298篇 |
1987年 | 16358篇 |
1986年 | 15256篇 |
1985年 | 15294篇 |
1984年 | 12436篇 |
1983年 | 10847篇 |
1982年 | 8304篇 |
1981年 | 7610篇 |
1980年 | 7026篇 |
1979年 | 12023篇 |
1978年 | 9555篇 |
1977年 | 8758篇 |
1976年 | 8077篇 |
1975年 | 9146篇 |
1974年 | 9923篇 |
1973年 | 9839篇 |
1972年 | 8923篇 |
1971年 | 8160篇 |
1970年 | 7127篇 |
1969年 | 6976篇 |
1968年 | 6288篇 |
1967年 | 5400篇 |
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
11.
Structural maintenance of chromosomes (SMC) proteins play fundamental roles in higher-order chromosome dynamics from bacteria to humans. It has been proposed that the Bacillus subtilis SMC (BsSMC) homodimer is composed of two anti-parallel coiled-coil arms, each having an ATP-binding domain at its distal end. It remains totally unknown, however, how the two-armed structure supports ATP-dependent actions of BsSMC. By constructing a number of mutant derivatives including 'single-armed' BsSMC, we show here that the central hinge domain provides a structural flexibility that allows opening and closing of the two arms. This unique structure brings about bimodal regulation of the SMC ATPase cycle. Closing the arm can trigger ATP hydrolysis by allowing an end-end interaction within a dimer (intramolecular mode). When bound to DNA, ATP promotes a dimer-dimer interaction, which in turn activates their DNA-dependent ATPase activity (intermolecular mode). Our results reveal a novel mechanism of ATPase regulation and provide mechanistic insights into how eukaryotic SMC protein complexes could mediate diverse chromosomal functions, such as chromosome condensation and sister chromatid cohesion. 相似文献
12.
13.
14.
BACKGROUND: We report a successful pregnancy in a woman with severe ovarian dysfunction and infertility associated with a variant beta-subunit of luteinizing hormone (LH). METHOD/OUTCOME: A 35-year-old woman consulted our unit for infertility. Laparoscopy and ultrasonography showed obstruction of the right tube and ovulation from the right ovary only. Human menopausal gonadotrophin (hMG) therapy was used for six subsequent cycles, but did not result in conception. Subsequently, marked elevation of follicle-stimulating hormone (FSH) and testosterone, together with polycystic ovary (PCO) were noted. The patient failed to respond to ovarian stimulation by hMG. Severe ovarian dysfunction such as premature ovarian failure (POF) was strongly suspected. Sequence analysis of the LH beta-subunit gene indicated heterozygosity for point mutations Trp(8) to Arg(8) and Ile(15) to Thr(15) in the coding sequence. LH hypersecretion resembling that seen in PCO syndrome was observed. Induction of ovulation by hMG was successful in the first cycle in which the basal LH and FSH were well controlled with gonadotrophin-releasing hormone analog following estrogen-progesterone replacement. She conceived and delivered a healthy male infant at term. CONCLUSION: Clinicians should be clinically aware of patients with immunologically anomalous LH variant who might be at risk of developing ovarian failure within a relatively short time span. Pertinent treatment should be applied without delay in such cases. 相似文献
15.
16.
17.
H. Takahashi K. Takita T. Kishimoto T. Mitsui H. Hori 《Journal of Phytopathology》2002,150(10):529-535
Phenylalanine ammonia‐lyase (PAL, EC 4.3.1.5) activity in clubroot disease‐resistant turnip calli was transiently increased by 20 h after the inoculation with Plasmodiophora brassicae spores. The magnitude of the increase in PAL activity was four to six times higher than constitutive PAL activity. There was no transient increase in PAL activity in susceptible calli. Preincubation of calli in Ca2+‐free medium or the removal of Ca2+ from cell surfaces by ethylene glycol bis(2‐aminoethyl ether)‐N,N,N′,N′‐tetraacetic acid‐chelation, completely inhibited induced PAL activity. The influx of exogenous Ca2+ into cells appears necessary for this pathogen induced PAL activity. Verapamil and the calmodulin inhibitor W7 almost completely inhibited induced PAL activity at 1 and 0.1 mm , respectively. Neomycin, ruthenium red and (1‐(6‐[(17β‐3‐Methoxyestra‐1,3,5‐(10)‐trien‐17‐yl)amino]hexyl)‐1H‐pyrrole‐2,5‐dione) did not inhibit induced PAL activity. Thus, verapamil and N‐(6‐aminohexyl)‐5‐chloro‐1‐naphthalenesulphonamide hydrochloride‐sensitive Ca2+‐mediated signalling process appear necessary for P. brassicae induced PAL activity. As the protein synthesis inhibitor cycloheximide (CHX) blocked the induced increasing PAL activity, de novo synthesis of PAL appears to be required for turnip cell defence reactions against P. brassicae. 相似文献
18.
Homeostatic mechanisms regulate synaptic function to maintain nerve and muscle excitation within reasonable physiological limits. The mechanisms that initiate homeostasic changes to synaptic function are not known. We specifically impaired cellular depolarization by expressing the Kir2.1 potassium channel in Drosophila muscle. In Kir2.1-expressing muscle there is a persistent outward potassium current ( approximately 10 nA), decreased muscle input resistance (50-fold), and a hyperpolarized resting potential. Despite impaired muscle excitability, synaptic depolarization of muscle achieves wild-type levels. A quantal analysis demonstrates that increased presynaptic release (quantal content), without a change in quantal size (mEPSC amplitude), compensates for altered muscle excitation. Because morphological synaptic growth is normal, we conclude that a homeostatic increase in presynaptic release compensates for impaired muscle excitability. These data demonstrate that a monitor of muscle membrane depolarization is sufficient to initiate synaptic homeostatic compensation. 相似文献
19.
The Major Facilitator Superfamily lactose transport protein (LacS) undergoes reversible self-association in the detergent-solubilized state, and is present in the membrane as a dimer. We determined the functional unit for proton motive force (Deltap)-driven lactose uptake and lactose/methyl-beta-D-galactopyranoside equilibrium exchange in a proteoliposomal system in which a single cysteine mutant, LacS-C67, defective in Deltap-driven uptake, was co-reconstituted with fully functional cysteine-less protein, LacS-cl. From the quadratic relationship between the uptake activity and the ratio of LacS-C67/LacS-cl, we conclude that the dimeric state of LacS is required for Deltap-driven uptake. N-ethylmaleimide (NEM) treatment of proteoliposomes abolished the LacS-C67 exchange activity but left the LacS-cl unaffected. After NEM treatment, the exchange activity decreased linearly with increasing ratios of LacS-C67/LacS-cl, suggesting that the monomeric state of LacS is sufficient for this mode of transport. We propose that the two subunits of LacS are functionally coupled in the step associated with conformational reorientation of the empty binding site, a step unique for Deltap-driven uptake. 相似文献
20.
High-resolution genetic and physical maps were constructed for the region of chromosome 2 containing the major fruit-shape locus ovate. A total of 3,000 NIL F2 and F3 NILs derived from Lycopersicon esculentum cv. Yellow Pear (TA503) x L. pennellii (a wild tomato) were used to position ovate adjacent to the marker TG645 and flanked by markers TX700 and BA10R (a 0.03-cM interval). BAC libraries and a BIBAC library were screened with the closest marker, TG645. Genetic mapping with the ends of isolated BAC clones revealed that two BAC clones (100 and 140 kb) both contained the ovate locus. Screening of sequences from these BAC clones revealed synteny between this segment of tomato chromosome 2 and the chromosome-4 region of Arabidopsis containing the BAC clone ATAP22. Microsynteny between the two genomes was exploited to find additional markers near the ovate locus. The placement of ovate on a BAC clone will now allow cloning of this locus and, hence, may open the door to understanding the molecular basis of fruit development and also facilitate the genetic engineering of fruit-shape characteristics. This also represents the first time that microsynteny with Arabidopsis has been exploited for positional cloning purposes in a different plant family. 相似文献