首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   269篇
  免费   18篇
  287篇
  2019年   1篇
  2016年   2篇
  2015年   1篇
  2014年   11篇
  2013年   5篇
  2012年   21篇
  2011年   25篇
  2010年   6篇
  2008年   29篇
  2007年   21篇
  2006年   20篇
  2005年   28篇
  2004年   25篇
  2003年   24篇
  2002年   18篇
  2001年   2篇
  2000年   4篇
  1999年   4篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1985年   2篇
  1943年   6篇
  1942年   5篇
  1941年   7篇
  1940年   5篇
  1939年   2篇
排序方式: 共有287条查询结果,搜索用时 14 毫秒
41.
Model‐based analysis of enzyme kinetics allows the determination of optimal conditions for their use in biocatalysis. For biotransformations or fermentative approaches the modeling of metabolic pathways or complex metabolic networks is necessary to obtain model‐based predictions of steps which limit product formation within the network. To set up adequate kinetic models, relevant mechanistic information about enzyme properties is required and can be taken from in vitro studies with isolated enzymes or from in vivo investigations using stimulus‐response experiments which provide a lot of kinetic information about the metabolic network. But with increasing number of reaction steps and regulatory interdependencies in the network structure the amount of simulation data dramatically increases and the simulation results from the dynamic models become difficult to analyze and interpret. Demonstrated for an Escherichia coli model of the central carbon metabolism, methods for visualization and animation of simulation data were applied and extended to facilitate model analysis and biological interpretation. The dynamic metabolite pool and metabolic flux changes were visualized simultaneously by a software tool. In addition, a new quantification method for enzyme activation/inhibition was proposed, and this information was implemented in the metabolic visualization.  相似文献   
42.
43.
Li ZY  Sun R  Li J  Song YX  Lin YC  Zeng X  He HJ  Wei J  Yang F  Zheng HQ  Lv ZY  Wu ZD 《Journal of helminthology》2012,86(4):410-417
The pathogenesis of angiostrongyliasis, resulting from Angiostrongylus cantonensis invasion of the human central nervous system, remains elusive. Anthelmintics are usually used to kill worms, although dead worms in the brain may cause severe inflammation which will lead to central nervous system damage. Therefore, combination therapy with anthelmintics and anti-inflammatory drugs in the treatment of human angiostrongyliasis needs further study. To evaluate the efficacy of albendazole combined with a marine fungal extract (m2-9) in A. cantonensis infection, BALB/c mice infected by the third-stage larvae of A. cantonensis were divided into three groups: mice treated with albendazole or m2-9 alone or in combination from day 5 post-inoculation (PI). Several efficacy parameters were recorded, including weight change, worm recovery, neurological function, behavioural analysis, eosinophil and leucocyte counts. The results showed that combination therapy increased body weight, reduced worm burden, improved learning ability, memory and action, decreased neurological dysfunction and leucocyte response in these mice. The combination of albendazole and m2-9 treatment significantly decreased leucocyte response and increased the frequency of rearing, compared to infected mice treated with either drug alone. Therefore, m2-9 is a natural product with potentially significant therapeutic value for angiostrongyliasis and is worthy of further study.  相似文献   
44.
45.
c-Jun N-terminal kinase (JNK) is activated by dual phosphorylation of both threonine and tyrosine residues in the phosphorylation loop of the protein in response to several stress factors. However, the precise molecular mechanisms for activation after phosphorylation remain elusive. Here we show that Pin1, a peptidyl-prolyl isomerase, has a key role in the JNK1 activation process by modulating a phospho-Thr-Pro motif in the phosphorylation loop. Pin1 overexpression in human breast cancer cell lines correlates with increased JNK activity. In addition, small interfering RNA (siRNA) analyses showed that knockdown of Pin1 in a human breast cancer cell line decreased JNK1 activity. Pin1 associates with JNK1, and then catalyzes prolyl isomerization of the phospho-Thr-Pro motif in JNK1 from trans- to cis-conformation. Furthermore, Pin1 enhances the association of JNK1 with its substrates. As a result, Pin1(-/-) cells are defective in JNK activation and resistant to oxidative stress. These results provide novel insights that, following stress-induced phosphorylation of Thr in the Thr-Pro motif of JNK1, JNK1 associates with Pin1 and undergoes conformational changes to promote the binding of JNK1 to its substrates, resulting in cellular responses from extracellular signals.  相似文献   
46.
Undecaprenyl pyrophosphate synthase (UPPS) catalyzes the consecutive condensation reactions of eight isopentenyl pyrophosphate (IPP) with farnesyl pyrophosphate (FPP) to generate C(55) undecaprenyl pyrophosphate (UPP). In the present study, site-directed mutagenesis, fluorescence quenching, and stopped-flow methods were utilized to examine the substrate binding and the protein conformational change. (S)-Farnesyl thiopyrophosphate (FsPP), a FPP analogue, was synthesized to probe the enzyme inhibition and events associated with the protein fluorescence change. This compound with a much less labile thiopyrophosphate shows K(i) value of 0.2 microm in the inhibition of Escherichia coli UPPS and serves as a poor substrate, with the k(cat) value (3.1 x 10(-7) s(-1)) 10(7) times smaller than using FPP as the substrate. Reduction of protein intrinsic fluorescence was observed upon addition of FPP (or FsPP) to the UPPS solution. Moreover, fluorescence studies carried out using W91F and other mutant UPPS with Trp replaced by Phe indicate that FPP binding mainly quenches the fluorescence of Trp-91, a residue in the alpha3 helix that moves toward the active site during substrate binding. Using stopped-flow apparatus, a three-phase protein fluorescence change with time was observed by mixing the E.FPP complex with IPP in the presence of Mg(2+). However, during the binding of E.FsPP with IPP, only the fastest phase was observed. These results suggest that the first phase is due to the IPP binding to E.FPP complex, and the other two slow phases are originated from the protein conformational change. The two slow phases coincide with the time course of FPP chain elongation from C(15) to C(55) and product release.  相似文献   
47.
Stability, unfolding mechanism, spectroscopic, densimetric, and structural characteristics of the oxidatively stable C69S variant (HodC) of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (Hod) have been determined by classical and pressure modulation scanning calorimetry (DSC and PMDSC, respectively), circular dichroism (CD) spectroscopy, differential scanning densimetry (DSD), and dynamic light scattering measurements. At 25 degrees C, hexahistidine-tagged HodC has a hydrodynamic radius of 2.3 nm and is characterized by an unusually high degree of alpha-helical structure of approximately 60%, based on deconvolution of CD spectra. The percentage of beta-sheets and -turns is expected to be relatively low in view of its sequence similarity to proteins of the alpha/beta-hydrolase fold superfamily. His6HodC exhibits three-state unfolding (N <--> I <--> D) with an intermediate state I that exhibits at the transition temperature a volume larger than that of the native or denatured state. The intermediate state I is also associated with the highest isothermal expansion coefficient, alphaP, of the three states and exhibits a significantly lower percentage of alpha-helical structure than the native state. The stability difference between the native and intermediate state is rather small which makes I a potential candidate for reactions with various ligands, particularly those having a preference for the apparently preserved beta-type motifs.  相似文献   
48.
49.
The effect of chain topology on (i) the peptide secondary structure, (ii) the nanophase self-assembly, and (iii) the local segmental and global peptide relaxations has been studied in a series of model diblock and 3-arm star copolypeptides of poly(epsilon-carbobenzyloxy-L-lysine) (PZLL) and poly(gamma-benzyl-L-glutamate) (PBLG) with PZLL forming the core. Diblock copolypeptides are nanophase separated with PBLG and PZLL domains comprising alpha-helices packed in a hexagonal lattice. Star copolypeptides are only weakly phase separated, comprising PBLG and PZLL alpha-helices in a pseudohexagonal lattice. Phase mixing has profound consequences on the local and global dynamics. The relaxation of the peptide secondary structure speeds up, and the helix persistence length is further reduced in the stars, signifying an increased concentration of helical defects.  相似文献   
50.
Chu HM  Wang AH 《Proteins》2007,66(4):996-1003
The P-loop-containing protein phos-phatases are important regulators in signal transduction. These enzymes have structural and functional similarity with a conserved sequence of Dx(25-41)HCxxGxxR(T/S) essential for catalysis. The singular protein tyrosine phosphatase (PTP) from archaeal Sulfolobus solfataricus is one of the smallest known PTPs with extreme thermostability. Here, we report the crystal structure of this phosphatase and its complexes with two tyrosyl phosphopeptides A-(p)Y-R and N-K-(p)Y-G-N. The structure suggests the minimal structural motif of the PTP family, having two variable sequences inserted between the beta2-beta3 and beta3-beta4 strands, respectively. The phosphate of both phosphopeptide substrates is bound to the P-loop through several hydrogen bonds. Comparison of several phosphatase-substrate complexes revealed that Gln135 on the Q-loop has different modes of recognition toward phosphopeptides. The substrate specificity of SsoPTP is primarily localized at the phosphotyrosine, suggesting that this phosphatase may be a prototypical PTP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号