首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   4篇
  132篇
  2021年   3篇
  2019年   3篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   6篇
  2011年   8篇
  2010年   1篇
  2009年   5篇
  2008年   9篇
  2007年   10篇
  2006年   8篇
  2005年   6篇
  2004年   6篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  2000年   7篇
  1999年   2篇
  1998年   1篇
  1997年   4篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1991年   4篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1979年   2篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有132条查询结果,搜索用时 0 毫秒
61.
We have used circular dichroism (CD) spectroscopy and chlorophyll fluorescence induction measurements in order to examine low-pH-induced changes in the chiral macro-organization of the chromophores and in the efficiency of non-photochemical quenching of the chlorophyll a fluorescence (NPQ) in intact, dark-adapted cells of Chlorella fusca (Chlorophyceae) and Mantoniella squamata (Prasinophyceae). We found that: (i) high proton concentrations enhanced the formation of chiral macrodomains of the complexes, i.e. the formation of large aggregates with long-range chiral order of pigment dipoles; this was largely independent of the low-pH-induced accumulation of de-epoxidized xanthophylls; (ii) lowering the pH led to NPQ; however, efficient energy dissipation, in the absence of excess light, could only be achieved if a substantial part of violaxanthin was converted to zeaxanthin and antheraxanthin in Chlorella and Mantoniella, respectively; (iii) the low-pH-induced changes in the chiral macro-organization of pigments were fully reversed by titrating the cells to neutral pH; (iv) at neutral pH, the presence of antheraxanthin or zeaxanthin did not bring about a sizeable NPQ. Hence, low-pH-induced NPQ in dark adapted algal cells appears to be associated both with the presence of de-epoxidized xanthophylls and structural changes in the chiral macrodomains. It is proposed that the macrodomains, by providing a suitable structure for long-distance migration of the excitation energy, in the presence of quenchers associated with de-epoxidized xanthophylls, facilitate significantly the dissipation of unused excitation energy. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
62.
This review of the diagnosis, causes, prevention and treatment of hypocalcemia emphasizes the high incidence of this biological alteration in patients with 22q11 microdeletion. It also points out its large spectrum of presentation, from cases where the most prominent feature of the syndrome is hypocalcemia with hypoparathyroidism, to cases with asymptomatic, latent or late-onset hypocalcemia. Hence, the advice to perform genetic analysis of the 22q11 region in patients with late-onset or recurrent hypoparathyroidism and to systematically include serum calcium in the survey of patients with known 22q11 microdeletion, especially during infancy, adolescence and pregnancy and especially during cardiac surgery or sepsis.  相似文献   
63.
Acyl-lipid desaturation introduces double bonds (unsaturated bonds) at specifically defined positions of fatty acids that are esterified to the glycerol backbone of membrane glycerolipids. Desaturation patterns of the glycerolipids of Cylindrospermopsis raciborskii, a filamentous cyanobacterium, were determined in cells grown at 35 degrees C and 25 degrees C. The lowering of the growth temperature from 35 degrees C to 25 degrees C resulted in a considerable accumulation of polyunsaturated octadecanoic fatty acids in all lipid classes. The tolerance to low-temperature photo-inhibition of the C. raciborskii cells grown at 25 degrees C and 35 degrees C was also compared. The lower growth temperature increased the tolerance of C. raciborskii cells. These results strengthen the importance of polyunsaturated glycerolipids in the tolerance to environmental stresses and may give a physiological explanation for the determinative role of C. raciborskii in algal blooming in Lake Balaton (Hungary).  相似文献   
64.
Acyl-lipid desaturation introduces double bonds (unsaturated bonds) at specifically defined positions of fatty acids that are esterified to the glycerol backbone of membrane glycerolipids. Desaturation pattern of the glycerolipids of Cylindrospermopsis raciborskii (C. raciborskii), a filamentous cyanobacterial strain, was determined in cells grown at 35 degrees C and 25 degrees C. The lowering of the growth temperature from 35 degrees C to 25 degrees C resulted in a considerable accumulation of polyunsaturated octadecanoic fatty acids in all lipid classes. Lipid unsaturation of C. raciborskii was also compared to Synechocystis PCC6803. In C. raciborskii cells, a shift in growth temperature induced a much more pronounced alteration in the desaturation pattern of all lipid classes than in Synechocystis PCC6803. The tolerance to low-temperature photoinhibition of the C. raciborskii cells grown at 25 degrees C and 35 degrees C was also compared to the tolerance of Synechocystis cells grown at the same temperatures. Lower growth temperature increased the tolerance of C. raciborskii cells but not that of Synechocystis cells. These results strengthen the importance of polyunsaturated glycerolipids in the tolerance to environmental stresses and may give a physiological explanation for the determinative role of C. raciborskii strain in algal blooming in the Lake Balaton (Hungary).  相似文献   
65.
Electron transport processes were investigated in barley leaves in which the oxygen-evolution was fully inhibited by a heat pulse (48 degrees C, 40 s). Under these circumstances, the K peak (approximately F(400 micros)) appears in the chl a fluorescence (OJIP) transient reflecting partial Q(A) reduction, which is due to a stable charge separation resulting from the donation of one electron by tyrozine Z. Following the K peak additional fluorescence increase (indicating Q(A)(-) accumulation) occurs in the 0.2-2 s time range. Using simultaneous chl a fluorescence and 820 nm transmission measurements it is demonstrated that this Q(A)(-) accumulation is due to naturally occurring alternative electron sources that donate electrons to the donor side of photosystem II. Chl a fluorescence data obtained with 5-ms light pulses (double flashes spaced 2.3-500 ms apart, and trains of several hundred flashes spaced by 100 or 200 ms) show that the electron donation occurs from a large pool with t(1/2) approximately 30 ms. This alternative electron donor is most probably ascorbate.  相似文献   
66.
Preservation with formalin and storage at 4 degrees C of freshwater samples, associated with sonication before counting, proved to be efficient for a few days of storage (no differences with the initial cell count within 7 d of storage); after 8 months, 95% of the initial count was preserved. This procedure always gave higher counts than those obtained from the freezing technique of filter storage at -18 degrees C after sample filtration.  相似文献   
67.
Aggregates and solubilized trimers of LHCII were characterized by circular dichroism (CD), linear dichroism and time-resolved fluorescence spectroscopy and compared with thylakoid membranes in order to evaluate the native state of LHCII in vivo. It was found that the CD spectra of lamellar aggregates closely resemble those of unstacked thylakoid membranes whereas the spectra of trimers solubilized in n-dodecyl-β,d-maltoside, n-octyl-β,d-glucopyranoside, or Triton X-100 were drastically different in the Soret region. Thylakoid membranes or LHCII aggregates solubilized with detergent exhibited CD spectra similar to the isolated trimers. Solubilization of LHCII was accompanied by profound changes in the linear dichroism and increase in fluorescence lifetime. These data support the notion that lamellar aggregates of LHCII retain the native organization of LHCII in the thylakoid membranes. The results indicate that the supramolecular organization of LHCII, most likely due to specific trimer-trimer contacts, has significant impact on the pigment interactions in the complexes.  相似文献   
68.
In order to obtain information on the organization of the pigment molecules in chlorophyll (Chl) a/b/c-containing organisms, we have carried out circular dichroism (CD), linear dichroism (LD) and absorption spectroscopic measurements on intact cells, isolated thylakoids and purified light-harvesting complexes (LHCs) of the prasinophycean alga Mantoniella squamata. The CD spectra of the intact cells and isolated thylakoids were predominated by the excitonic bands of the Chl a/b/c LHC. However, some anomalous bands indicated the existence of chiral macrodomains, which could be correlated with the multilayered membrane system in the intact cells. In the red, the thylakoid membranes and the LHC exhibited a well-discernible CD band originating from Chl c, but otherwise the CD spectra were similar to that of non-aggregated LHC II, the main Chl a/b LHC in higher plants. In the Soret region, however, an unusually intense (+) 441 nm band was observed, which was accompanied by negative bands between 465 and 510 nm. It is proposed that these bands originate from intense excitonic interactions between Chl a and carotenoid molecules. LD measurements revealed that the Q(Y) dipoles of Chl a in Mantoniella thylakoids are preferentially oriented in the plane of the membrane, with orientation angles tilting out more at shorter than at longer wavelengths (9 degrees at 677 nm, 20 degrees at 670 nm and 26 degrees at 662 nm); the Q(Y) dipole of Chl c was found to be oriented at 29 degrees with respect to the membrane plane. These data and the LD spectrum of the LHC, apart from the presence of Chl c, suggest an orientation pattern of dipoles similar to those of higher plant thylakoids and LHC II. However, the tendency of the Q(Y) dipoles of Chl b to lie preferentially in the plane of the membrane (23 degrees at 653 nm and 30 degrees at 646 nm) is markedly different from the orientation pattern in higher plant membranes and LHC II. Hence, our CD and LD data show that the molecular organization of the Chl a/b/c LHC, despite evident similarities, differs significantly from that of LHC II.  相似文献   
69.
Diurnal fluctuations were observed in the content and some structural and functional properties of the light-harvesting chlorophyll (Chl) a/b pigment-protein complex of photosystem II (LHCII) in young developing wheat (Triticum aestivum) leaves grown under 16 hours light/8 hours dark illumination regime. The fluctuations could be correlated with the diurnal oscillation in the level of mRNA for LHCII. The most pronounced changes occurred in the basal segments of the leaves. They were weaker or hardly discernible in the middle and tip segments. As judged from the diurnal variations of the Chl-a/Chl-b molar ratio, the LHCII content of the thylakoid membranes peaked around 2 pm. This can be accounted for by the cumulative effect of the elevated level of mRNA in the morning and early afternoon. In the basal segment, the extent of the fluctuation in the LHCII content was approximately 25%, as determined from gel electrophoresis (“green gels”). The amplitude of the principal bands of the circular dichroism (CD) spectra of isolated chloroplasts paralleled the changes in the LHCII content. Our circular dichroism data suggest that the newly synthesized LHCII complexes are incorporated into the existing helically organized macrodomains of the pigment-protein complexes or themselves form such macrodomains in the thylakoid membranes. Chl-a fluorescence induction kinetics also showed diurnal variations especially in the basal segments of the leaves. This most likely indicates fluctuations in the ability of membranes to undergo “state transitions.” These observations suggest a physiological role of diurnal rhythm of mRNA for LHCII in young developing leaves.  相似文献   
70.
In nature, H2 production in Chlamydomonas reinhardtii serves as a safety valve during the induction of photosynthesis in anoxia, and it prevents the over‐reduction of the photosynthetic electron transport chain. Sulphur deprivation of C. reinhardtii also triggers a complex metabolic response resulting in the induction of various stress‐related genes, down‐regulation of photosynthesis, the establishment of anaerobiosis and expression of active hydrogenase. Photosystem II (PSII) plays dual role in H2 production because it supplies electrons but the evolved O2 inhibits the hydrogenase. Here, we show that upon sulphur deprivation, the ascorbate content in C. reinhardtii increases about 50‐fold, reaching the mM range; at this concentration, ascorbate inactivates the Mn‐cluster of PSII, and afterwards, it can donate electrons to tyrozin Z+ at a slow rate. This stage is followed by donor‐side‐induced photoinhibition, leading to the loss of charge separation activity in PSII and reaction centre degradation. The time point at which maximum ascorbate concentration is reached in the cell is critical for the establishment of anaerobiosis and initiation of H2 production. We also show that ascorbate influenced H2 evolution via altering the photosynthetic electron transport rather than hydrogenase activity and starch degradation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号