首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1265篇
  免费   66篇
  1331篇
  2021年   10篇
  2020年   8篇
  2019年   12篇
  2018年   31篇
  2017年   17篇
  2016年   26篇
  2015年   25篇
  2014年   43篇
  2013年   55篇
  2012年   86篇
  2011年   76篇
  2010年   45篇
  2009年   41篇
  2008年   65篇
  2007年   77篇
  2006年   74篇
  2005年   63篇
  2004年   70篇
  2003年   65篇
  2002年   70篇
  2001年   26篇
  2000年   24篇
  1999年   14篇
  1997年   7篇
  1996年   8篇
  1995年   10篇
  1994年   10篇
  1993年   11篇
  1992年   9篇
  1990年   11篇
  1989年   12篇
  1988年   8篇
  1987年   7篇
  1986年   8篇
  1985年   11篇
  1984年   9篇
  1983年   16篇
  1982年   10篇
  1981年   9篇
  1980年   9篇
  1979年   9篇
  1976年   8篇
  1975年   7篇
  1974年   8篇
  1973年   12篇
  1972年   8篇
  1971年   6篇
  1970年   6篇
  1969年   12篇
  1967年   7篇
排序方式: 共有1331条查询结果,搜索用时 15 毫秒
91.
TT-232 is a structural analogue of somatostatin exhibiting strong and selective growth-inhibitory effects, inhibition of neurogenic inflammation, as well as general anti-inflammatory and analgesic potential without the wide-ranging endocrine side effects of the parent hormone and its "traditional" analogues. The anti-inflammatory action of TT-232 is mediated through the SSTR4 receptor, and its antitumor activity is mediated through the SSTR1 receptor and by the tumor-specific isoform of pyruvate kinase. Its mechanism of action is in line with a new era of molecular medicine called signal transduction therapy, where "false" intracellular or intercellular communication is inhibited or corrected without interfering with basic cell functions and machinery. TT232 has passed phase I clinical trials without toxicity and significant side effects, and phase II studies are running for oncological and anti-inflammatory indications, respectively. This compound has the perspective to become the first drug in molecularly targeted therapy of inflammation where a combined effect of anti-inflammatory, analgesic, and neurogenic inflammation-inhibiting activity can be achieved.  相似文献   
92.
A multi-microelectrode culture chamber system was constructed for monitoring simultaneously morphological and electrophysiological development of neural cells in vitro. The setup consisted of a pattern of gold conductor lines evaporated onto a glass substrate and insulated with polyamide. The width of each electrode was 10 microns, and the distance between the electrodes was 60 microns. The electrode patterns were constructed and the uncovering of the electrode tips were carried out by photo-etching. This system allowed us to record spontaneous activities in both explant- and primary monolayer cultures of either rat or mouse spinal cords and forebrains, during neuronal regeneration and maturation.  相似文献   
93.
Low-temperature resonance Raman spectroscopy was used to study the changes in the molecular structure and configuration of the major xanthophylls in thylakoid membranes isolated from mutants of pea with modified pigment content and altered structural organization of their pigment-protein complexes. The Raman spectra contained four known groups of bands, nu(1)-nu(4), which could be assigned to originate mainly from the long wavelength absorbing lutein and neoxanthin upon 514.5 nm and at 488 nm excitations, respectively. The overall configuration of these bound xanthophyll molecules in the mutants appeared to be similar to the wild type, and the configuration in the wild type was almost identical with that in the isolated main chlorophyll a/b light harvesting protein complex of photosystem II (LHCII). Significant differences were found mainly in the region of nu(4) (around 960 cm(-1)), which suggest that the macroorganization of PS II-LHCII supercomplexes and/or of the LHCII-only domains are modified in the mutants compared to the wild type.  相似文献   
94.
Glioblastoma multiforme (GBM) is the most common and the most aggressive form of primary brain tumor. Jak2 is a non-receptor tyrosine kinase that is involved in proliferative signaling through its association with various cell surface receptors. Hyperactive Jak2 signaling has been implicated in numerous hematological disorders as well as in various solid tumors including GBM. Our lab has developed a Jak2 small molecule inhibitor known as G6. It exhibits potent efficacy in vitro and in several in vivo models of Jak2-mediated hematological disease. Here, we hypothesized that G6 would inhibit the pathogenic growth of GBM cells expressing hyperactive Jak2. To test this, we screened several GBM cell lines and found that T98G cells express readily detectable levels of active Jak2. We found that G6 treatment of these cells reduced the phosphorylation of Jak2 and STAT3, in a dose-dependent manner. In addition, G6 treatment reduced the migratory potential, invasive potential, clonogenic growth potential, and overall viability of these cells. The effect of G6 was due to its direct suppression of Jak2 function and not via off-target kinases, as these effects were recapitulated in T98G cells that received Jak2 specific shRNA. G6 also significantly increased the levels of caspase-dependent apoptosis in T98G cells, when compared to cells that were treated with vehicle control. Lastly, when T98G cells were injected into nude mice, G6 treatment significantly reduced tumor volume and this was concomitant with significantly decreased levels of phospho-Jak2 and phospho-STAT3 within the tumors themselves. Furthermore, tumors harvested from mice that received G6 had significantly less vimentin protein levels when compared to tumors from mice that received vehicle control solution. Overall, these combined in vitro and in vivo results indicate that G6 may be a viable therapeutic option against GBM exhibiting hyperactivation of Jak2.  相似文献   
95.
Isoprene synthase (ISPS) catalyzes the formation of isoprene, an important volatile terpenoid with strong effects on global atmospheric chemistry and protective physiological functions in plant leaves. Many terpene synthase genes including isoprene synthase, a member of the TPS-b cluster of this numerous gene family, were already functionally analysed but much less is known about regulation of their promoters. To study regulation of the PcISPS gene in detail we developed transgenic Grey poplar (Populus × canescens) and Arabidopsis thaliana plants in which the PcISPS promoter is fused to enhanced green fluorescent protein (E-GFP) and β-glucuronidase (GUS) reporter genes. We analysed these reporters during plant development, for organ specificity and in plants subjected to different light and temperature regimes. We observed low promoter activity in non-isoprene emitting tissue like roots where ISPS gene is transcribed but no active enzyme is detectable. In leaves we demonstrate that light and temperature directly modulate ISPS promoter activity. Moreover, with confocal laser scanning microscopy we show a cell specific gradient of ISPS promoter activity within the leaf parenchyma depending on light direction. Our results indicate that ISPS promoter activity, which correlates with basal isoprene emission capacity, is not uniformly distributed within leaf tissue and that it can adapt rapidly towards internal as well as external environmental stimuli.  相似文献   
96.
A series of novel pyrido[2,3-b]pyrazines were synthesized as potential antitumor agents for erlotinib-resistant tumors. Known signal inhibitor compounds from our Nested Chemical Library were tested in phenotypic assays on erlotinib-sensitive PC9 and erlotinib-resistant PC9-ER cell lines to find a compound class to be active on erlotinib resistant cell lines. Based on the screening data, novel pyrido[2,3-b]pyrazines were designed and synthesized. The effect of the substituent position of the heteroaromatic moiety in position 7 and the importance of unsubstituted position 2 of the pyridopyrazine core were explored. Compound 7n had an IC50 value of 0.09 μM for the inhibition of PC9 and 0.15 μM for the inhibition of PC9-ER. We found that some lead compounds of these structures overcome erlotinib-resistance which might become promising drug candidates to fight against NSCLC with EGFR T790M mutation. The signaling network(s) involved in the mechanism(s) of action of these novel compounds in overcoming erlotinib resistance remain to be elucidated.  相似文献   
97.
Vinblastine is a widely used anticancer drug with undesired side effects. Its conjugation with carrier molecules could be an efficient strategy to reduce these side effects. Besides this, the conjugate could exhibit increased efficiency against resistant cells, e.g., due to the altered internalization pathway. Oligoarginines, as cell-penetrating peptides, can transport covalently attached compounds into different kinds of cells and enhance the efficiency of those compounds. We report here the coupling of vinblastine through its carboxyl group at position 16 with the N-terminal amino function of L-Trp methyl ester. After hydrolysis of the ester group, 17-desacetylvinblastineTrp was conjugated to the N-terminal amino group of oligoarginine via the C-terminal carboxyl group of the Trp moiety in solution. The antitumor effect of conjugates was studied on sensitive and resistant human leukemia (HL-60) cells in vitro. Our data suggest that all conjugates investigated possess an antiproliferative effect against the studied cells. However, the effect was dependent on the number of Arg residues in the conjugates: Arg? > Arg? ? Arg?. The conjugate with Arg? exhibited similar efficicacy as compared with free 17-desacetylvinblastineTrp. The in vitro studies also showed that the tubulin binding ability of vinblastine was essentially preserved even in the octaarginine conjugate. We also observed that two isomers were formed during conjugation. These isomers showed different levels of activity against tubulin polymerization in vitro and in vivo. The 17-desacetylvinblastineTrp-Arg?-1 isomer conjugate possessed high selectivity against the mitotic spindles. HRMS and NMR data suggest that 17-desacetylvinblastineTrp-Arg?-1 and 17-desacetylvinblastineTrp-Arg?-2 are epimers at the tryptophan α carbon atom.  相似文献   
98.
In 1996 a novel oxidative stress biomarker, referred to as advanced oxidation protein products (AOPP) was detected in the plasma of chronic uremic patients. The aim of the present studies was to find out that which plasma fraction(s) is responsible for AOPP reactivity. Thermal treatment of pooled samples of human citrate-plasma or EDTA-plasma at 50 degrees C resulted in a rapid and parallel loss of fibrinogen concentration and AOPP reactivity. On the basis of time course and t1/2 values following thermal treatment, AOPP was indistinguishable from fibrinogen. There was a statistically significant (p < 0.0001) correlation between levels of blood plasma fibrinogen and AOPP in patients (n = 61) with various peripheral vascular or cardiovascular diseases. There was also a significant (p < 0.0001) relationship between plasma levels of fibrinogen and molar AOPP/fibrinogen ratio indicating that higher fibrinogen concentrations were associated with more oxidatively transformed groups on the molecule. Results of the present studies suggest that post-translationally modified fibrinogen is a key molecule responsible for human plasma AOPP reactivity. It remains to be elucidated what is the pathophysiological significance of the post-translationally modified fibrinogen in the inflammation-associated events of atherosclerosis, in platelet aggregation, and as a cardiovascular risk biomarker.  相似文献   
99.
The kinetics of non-photochemical quenching (NPQ) of chlorophyll fluorescence was studied in pea leaves at different temperatures between 5 and 25°C and during rapid jumps of the leaf temperature. At 5°C, NPQ relaxed very slowly in the dark and was sustained for up to 30 min. This was independent of the temperature at which quenching was induced. Upon raising the temperature to 25°C, the quenched state relaxed within 1 min, characteristic for qE, the energy-dependent component of NPQ. Measurements of the membrane permeability (ΔA515) in dark-adapted and preilluminated leaves and NPQ in the presence of dithiothreitol strongly suggest that the effect of low temperature on NPQ was not because of limitation by the lumenal pH or the de-epoxidation state of the xanthophylls. These data are consistent with the notion that the transition from the quenched to the unquenched state and vice versa involves a structural reorganization in the photosynthetic apparatus. An eight-state reaction scheme for NPQ is proposed, extending the model of Horton and co-workers (FEBS Lett 579:4201–4206, 2005), and a hypothesis is put forward concerning the nature of conformational changes associated with qE. Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   
100.
Three phosphatidylinositol 4-kinase isoforms, PI4K 230, 92 and 55 have been cloned and sequenced allowing a much wider characterization than the previously employed enzymological typing into type II and III enzymes. PI4K 230 and 92 contain a highly conserved catalytic core, PI4K55 one with a much lower degree of similarity. Candidate kinase motifs, deduced from the protein kinase super family, are absolutely conserved in all isoforms. Kinase activities are described based on their sensitivity and reactivity towards wortmannin, phenylarsine oxide (PAO) and 5'-p-fluorosulfonylbenzoyladenosine (FSBA). Localization of all isoforms in the cell is reported. All enzymes contain nuclear localization and export sequence motifs (NLS and NES) leading to the expectation that they can be transferred to the nucleus. PI4K230 has been found in the nucleolus, PI4K92 in the nucleus, additionally further broadening the function of these enzymes. In the cytoplasm of neuronal cells, PI4K230 is distributed evenly on membranes that are ultra structurally cisterns of the rough endoplasmatic reticulum, outer membranes of mitochondria, multivesicular bodies, and are in close vicinity of synaptic contacts. PI4K92 is functionally characterized as a key enzyme regulating Golgi disintegration/reorganization during mitosis probably via phosphorylation by cyclin-dependent kinases on well-defined sites. PI4K55 is involved in the production of second messengers, diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (InsP3) at the plasma membrane, moreover, in the endocytotic pathway in the cytoplasm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号