首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   748篇
  免费   63篇
  2022年   7篇
  2021年   10篇
  2018年   8篇
  2017年   6篇
  2016年   11篇
  2015年   31篇
  2014年   18篇
  2013年   32篇
  2012年   27篇
  2011年   32篇
  2010年   18篇
  2009年   16篇
  2008年   25篇
  2007年   35篇
  2006年   20篇
  2005年   14篇
  2004年   26篇
  2003年   32篇
  2002年   21篇
  2001年   25篇
  2000年   26篇
  1999年   21篇
  1998年   7篇
  1997年   14篇
  1996年   11篇
  1995年   12篇
  1994年   9篇
  1993年   11篇
  1992年   16篇
  1991年   14篇
  1990年   12篇
  1989年   19篇
  1988年   13篇
  1987年   11篇
  1986年   11篇
  1985年   12篇
  1984年   10篇
  1983年   11篇
  1982年   6篇
  1981年   5篇
  1980年   5篇
  1979年   8篇
  1978年   7篇
  1975年   6篇
  1974年   7篇
  1973年   9篇
  1971年   9篇
  1938年   5篇
  1937年   5篇
  1927年   5篇
排序方式: 共有811条查询结果,搜索用时 546 毫秒
41.
Mutations in PHEX (phosphate-regulating gene with homologies to endopeptidases on the X-chromosome) cause X-linked familial hypophosphatemic rickets (XLH), a disorder having severe bone and tooth dentin mineralization defects. The absence of functional PHEX leads to abnormal accumulation of ASARM (acidic serine- and aspartate-rich motif) peptide − a substrate for PHEX and a strong inhibitor of mineralization − derived from MEPE (matrix extracellular phosphoglycoprotein) and other matrix proteins. MEPE-derived ASARM peptide accumulates in tooth dentin of XLH patients where it may impair dentinogenesis. Here, we investigated the effects of ASARM peptides in vitro and in vivo on odontoblast differentiation and matrix mineralization. Dental pulp stem cells from human exfoliated deciduous teeth (SHEDs) were seeded into a 3D collagen scaffold, and induced towards odontogenic differentiation. Cultures were treated with synthetic ASARM peptides (phosphorylated and nonphosphorylated) derived from the human MEPE sequence. Phosphorylated ASARM peptide inhibited SHED differentiation in vitro, with no mineralized nodule formation, decreased odontoblast marker expression, and upregulated MEPE expression. Phosphorylated ASARM peptide implanted in a rat molar pulp injury model impaired reparative dentin formation and mineralization, with increased MEPE immunohistochemical staining. In conclusion, using complementary models to study tooth dentin defects observed in XLH, we demonstrate that the MEPE-derived ASARM peptide inhibits both odontogenic differentiation and matrix mineralization, while increasing MEPE expression. These results contribute to a partial mechanistic explanation of XLH pathogenesis: direct inhibition of mineralization by ASARM peptide leads to the mineralization defects in XLH teeth. This process appears to be positively reinforced by the increased MEPE expression induced by ASARM. The MEPE-ASARM system can therefore be considered as a potential therapeutic target.  相似文献   
42.
Using data from the newly available U.S. National Epidemiologic Survey on Alcohol and Related Conditions (NESARC; Wave 3; n = 36,309), we evaluated relationships among gender, cigarette smoking status (current, former, non-smoker), life event stress (0-1 vs. 2+ events), and their impact on transitions in major depression diagnosis (MDD; new vs. absent cases; ongoing vs. remit cases). Women who were both current and former cigarette smokers with more than two stressful events had higher rates of new MDD diagnosis compared to men who were current or former smokers with two or more stressful events. Current smoking and experiencing two or more stressful events increased the odds of having an ongoing MDD diagnosis, while being a former smoker decreased these odds. Results suggest that smoking and stress are markers for depression risk in women and should help guide clinical assessment as well as gender-difference research on the biological underpinnings of these conditions.  相似文献   
43.
Lu Y  Ye L  Yu S  Zhang S  Xie Y  McKee MD  Li YC  Kong J  Eick JD  Dallas SL  Feng JQ 《Developmental biology》2007,303(1):191-201
Dentin matrix protein 1 (DMP1) is expressed in both pulp and odontoblast cells and deletion of the Dmp1 gene leads to defects in odontogenesis and mineralization. The goals of this study were to examine how DMP1 controls dentin mineralization and odontogenesis in vivo. Fluorochrome labeling of dentin in Dmp1-null mice showed a diffuse labeling pattern with a 3-fold reduction in dentin appositional rate compared to controls. Deletion of DMP1 was also associated with abnormalities in the dentinal tubule system and delayed formation of the third molar. Unlike the mineralization defect in Vitamin D receptor-null mice, the mineralization defect in Dmp1-null mice was not rescued by a high calcium and phosphate diet, suggesting a different effect of DMP1 on mineralization. Re-expression of Dmp1 in early and late odontoblasts under control of the Col1a1 promoter rescued the defects in mineralization as well as the defects in the dentinal tubules and third molar development. In contrast, re-expression of Dmp1 in mature odontoblasts, using the Dspp promoter, produced only a partial rescue of the mineralization defects. These data suggest that DMP1 is a key regulator of odontoblast differentiation, formation of the dentin tubular system and mineralization and its expression is required in both early and late odontoblasts for normal odontogenesis to proceed.  相似文献   
44.
Inorganic pyrophosphate (PP(i)) produced by cells inhibits mineralization by binding to crystals. Its ubiquitous presence is thought to prevent "soft" tissues from mineralizing, whereas its degradation to P(i) in bones and teeth by tissue-nonspecific alkaline phosphatase (Tnap, Tnsalp, Alpl, Akp2) may facilitate crystal growth. Whereas the crystal binding properties of PP(i) are largely understood, less is known about its effects on osteoblast activity. We have used MC3T3-E1 osteoblast cultures to investigate the effect of PP(i) on osteoblast function and matrix mineralization. Mineralization in the cultures was dose-dependently inhibited by PP(i). This inhibition could be reversed by Tnap, but not if PP(i) was bound to mineral. PP(i) also led to increased levels of osteopontin (Opn) induced via the Erk1/2 and p38 MAPK signaling pathways. Opn regulation by PP(i) was also insensitive to foscarnet (an inhibitor of phosphate uptake) and levamisole (an inhibitor of Tnap enzymatic activity), suggesting that increased Opn levels did not result from changes in phosphate. Exogenous OPN inhibited mineralization, but dephosphorylation by Tnap reversed this effect, suggesting that OPN inhibits mineralization via its negatively charged phosphate residues and that like PP(i), hydrolysis by Tnap reduces its mineral inhibiting potency. Using enzyme kinetic studies, we have shown that PP(i) inhibits Tnap-mediated P(i) release from beta-glycerophosphate (a commonly used source of organic phosphate for culture mineralization studies) through a mixed type of inhibition. In summary, PP(i) prevents mineralization in MC3T3-E1 osteoblast cultures by at least three different mechanisms that include direct binding to growing crystals, induction of Opn expression, and inhibition of Tnap activity.  相似文献   
45.
The trafficking of aquaporin-2 (AQP2) involves multiple complex pathways, including regulated, cAMP-, and cGMP-mediated pathways, as well as a constitutive recycling pathway. Although several accessory proteins have been indirectly implicated in AQP2 recycling, the direct protein-protein interactions that regulate this process remain largely unknown. Using yeast two-hybrid screening of a human kidney cDNA library, we have identified the 70-kDa heat shock proteins as AQP2-interacting proteins. Interaction was confirmed by mass spectrometry of proteins pulled down from rat kidney papilla extract using a GST-AQP2 C-terminal fusion protein (GST-A2C) as a bait, by co-immunoprecipitation (IP) assays, and by direct binding assays using purified hsc70 and the GST-A2C. The direct interaction of AQP2 with hsc70 is partially inhibited by ATP, and the Ser-256 residue in the AQP2 C terminus is important for this direct interaction. Vasopressin stimulation in cells enhances the interaction of hsc70 with AQP2 in IP assays, and vasopressin stimulation in vivo induces an increased co-localization of hsc70 and AQP2 on the apical membrane of principal cells in rat kidney collecting ducts. Functional knockdown of hsc70 activity in AQP2 expressing cells results in membrane accumulation of AQP2 and reduced endocytosis of rhodamine-transferrin. Our data also show that AQP2 interacts with hsp70 in multiple in vitro binding assays. Finally, in addition to hsc70 and hsp70, AQP2 interacts with several other key components of the endocytotic machinery in co-IP assays, including clathrin, dynamin, and AP2. To summarize, we have identified the 70-kDa heat shock proteins as a AQP2 interactors and have shown for hsc70 that this interaction is involved in AQP2 trafficking.  相似文献   
46.
Abstract Bacteriodes gingivalis W50 was grown in a chemostat at pH 7.5 under haemin-limited and haemin excess conditions in order to provide cells with a known high or low inefectivity and virulence for mice, respectively. The activities of enzymes and formation of cytotoxic fermentation products by these cells were compared. No significant differences in chymotrypsin activity or in the ability to degrade hyaluronic acid were found; neither were there any significant differences in the production of butyrate, propionate or succinate. At pH 7.5, trypsin activity was 3.5-fold higher in cells grown under haemin excess conditions whereas collagenolytic activity was nearly 3-fold higher in haemin-limited cells. Although collagenolytic activity may be important in tissue damage, a high ratio of trypsin to collagen breakdown activities was associated with virulent cells grown under an excess of haemin.  相似文献   
47.
Aquaporin 9 expression along the male reproductive tract   总被引:10,自引:0,他引:10  
Fluid movement across epithelia lining portions of the male reproductive tract is important for modulating the luminal environment in which sperm mature and reside, and for increasing sperm concentration. Some regions of the male reproductive tract express aquaporin (AQP) 1 and/or AQP2, but these transmembrane water channels are not detectable in the epididymis. Therefore, we used a specific antibody to map the cellular distribution of another AQP, AQP9 (which is permeable to water and to some solutes), in the male reproductive tract. AQP9 is enriched on the apical (but not basolateral) membrane of nonciliated cells in the efferent duct and principal cells of the epididymis (rat and human) and vas deferens, where it could play a role in fluid reabsorption. Western blotting revealed a strong 30-kDa band in brush-border membrane vesicles isolated from the epididymis. AQP9 is also expressed in epithelial cells of the prostate and coagulating gland where fluid transport across the epithelium is important for secretory activity. However, it was undetectable in the seminal vesicle, suggesting that an alternative fluid transport pathway may be present in this tissue. Intracellular vesicles in epithelial cells along the reproductive tract were generally poorly stained for AQP9. Furthermore, the apical membrane distribution of AQP9 was unaffected by microtubule disruption. These data suggest that AQP9 is a constitutively inserted apical membrane protein and that its cell-surface expression is not acutely regulated by vesicular trafficking. AQP9 was detectable in the epididymis and vas deferens of 1-wk postnatal rats, but its expression was comparable with adult rats only after 3--4 wk. AQP9 could provide a route via which apical fluid and solute transport occurs in several regions of the male reproductive tract. The heterogeneous and segment-specific expression of AQP9 and other aquaporins along the male reproductive tract shown in this and in our previous studies suggests that fluid reabsorption and secretion in these tissues could be locally modulated by physiological regulation of AQP expression and/or function.  相似文献   
48.
49.
The size and complexity of the genomes of mammals in general, and humans in particular, is such that it will take many years to utilise this information to produce a genuine understanding of the control of cell behaviour. Since there are tens of thousands of genes to consider, the task of identifying those which play the most significant roles, biologically and medically, is both crucial and very demanding. Here we emphasise the importance of functional approaches to answering this question, i.e. the application of techniques which use the function of the gene itself in identifying the critical rate-limiting steps in biological processes. In this review, we use the functional analysis of one of the most important of these processes, the control of survival and apoptosis, to illustrate the power of a number of functional genomic strategies.This work was presented at the first Cancer Immunology and Immunotherapy Summer School, 8–13 September 2003, Ionian Village, Bartholomeio, Peloponnese, Greece.  相似文献   
50.
The Cu(II) and Ag(I) complexes, [Cu(phendio)3](ClO4)24H2O and [Ag(phendio)2]ClO4 (phendio = 1,10-phenanthroline-5,6-dione), are prepared in good yield by reacting phendio with the appropriate metal perchlorate salt. The X-ray crystal structure of the Ag(I) complex shows it to have a pseudo tetrahedral structure. `Metal-free' phendio and the Cu(II) and Ag(I) phendio complexes strongly inhibit the growth of the fungal pathogen Candida albicans, and are more active than their 1,10-phenanthroline analogues. The simple Ag(I) salts, AgCH3CO2, AgNO3 and AgClO4.H2O display superior anti-fungal properties compared to analogous simple Cu(II) and Mn(II) salts, suggesting that the nature of the metal ion strongly influences activity. Exposing C. albicans to `metal-free' phendio, simple Ag(I) salts and [Ag(phendio)2]ClO4 causes extensive, non-specific DNA cleavage. `Metal-free' phendio and [Ag(phendio)2]ClO4 induce gross distortions in fungal cell morphology and there is evidence for disruption of cell division. Both drugs also exhibit high anti-cancer activity when tested against cultured mammalian cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号