首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20150篇
  免费   1906篇
  国内免费   5篇
  2022年   196篇
  2021年   310篇
  2020年   212篇
  2019年   278篇
  2018年   398篇
  2017年   324篇
  2016年   576篇
  2015年   919篇
  2014年   1027篇
  2013年   1211篇
  2012年   1562篇
  2011年   1428篇
  2010年   982篇
  2009年   806篇
  2008年   1155篇
  2007年   1033篇
  2006年   958篇
  2005年   863篇
  2004年   868篇
  2003年   728篇
  2002年   672篇
  2001年   446篇
  2000年   412篇
  1999年   354篇
  1998年   196篇
  1997年   169篇
  1996年   133篇
  1995年   130篇
  1994年   143篇
  1993年   129篇
  1992年   208篇
  1991年   214篇
  1990年   189篇
  1989年   196篇
  1988年   174篇
  1987年   159篇
  1986年   163篇
  1985年   142篇
  1984年   122篇
  1983年   99篇
  1982年   100篇
  1981年   105篇
  1980年   92篇
  1979年   107篇
  1978年   108篇
  1976年   89篇
  1975年   98篇
  1974年   101篇
  1973年   89篇
  1972年   72篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
We have used polymorphic chloroplast simple sequence repeats (cpSSRs) to analyse levels of diversity and relationships within the genusZea. Between two and nine alleles were found at 15 polymorphic loci and combining the data from these loci gave 32 haplotypes in the 37 accessions studied. Genetic differentiation between the two sections within the genus was calculated using theST statistic which showed that 70% of the total variation was found to exist between the sections. A phylogenetic analysis based on the 2 distance metric showed a large split between the two sections and suggested multiple origins of modern cultivated maizeZea mays subsp.mays. The agreement of the phylogenetic tree with other molecular, morphological and karyological studies suggests that cpSSRs may have value in phylogenetic studies in plants.  相似文献   
992.
993.
994.
995.
Repair of chromosomal breaks is essential for cellular viability, but misrepair generates mutations and gross chromosomal rearrangements. We investigated the interrelationship between two homologous-repair pathways, i.e., mutagenic single-strand annealing (SSA) and precise homology-directed repair (HDR). For this, we analyzed the efficiency of repair in mammalian cells in which double-strand break (DSB) repair components were disrupted. We observed an inverse relationship between HDR and SSA when RAD51 or BRCA2 was impaired, i.e., HDR was reduced but SSA was increased. In particular, expression of an ATP-binding mutant of RAD51 led to a >90-fold shift to mutagenic SSA repair. Additionally, we found that expression of an ATP hydrolysis mutant of RAD51 resulted in more extensive gene conversion, which increases genetic loss during HDR. Disruption of two other DSB repair components affected both SSA and HDR, but in opposite directions: SSA and HDR were reduced by mutation of Brca1, which, like Brca2, predisposes to breast cancer, whereas SSA and HDR were increased by Ku70 mutation, which affects nonhomologous end joining. Disruption of the BRCA1-associated protein BARD1 had effects similar to those of mutation of BRCA1. Thus, BRCA1/BARD1 has a role in homologous repair before the branch point of HDR and SSA. Interestingly, we found that Ku70 mutation partially suppresses the homologous-repair defects of BARD1 disruption. We also examined the role of RAD52 in homologous repair. In contrast to yeast, Rad52(-)(/)(-) mouse cells had no detectable HDR defect, although SSA was decreased. These results imply that the proper genetic interplay of repair factors is essential to limit the mutagenic potential of DSB repair.  相似文献   
996.
997.
Kim NH  Jeong MS  Choi SY  Hoon Kang J 《Biochimie》2004,86(8):553-559
Neurofilament-L (NF-L) is a major element of neuronal cytoskeletons and known to be important for their survival in vivo. Since oxidative stress might play a critical role in the pathogenesis of neurodegenerative diseases, we investigated the role of Cu,Zn-superoxide dismutase (SOD) in the modification of NF-L. When disassembled NF-L was incubated with Cu,Zn-SOD and H2O2, the aggregation of protein was proportional to the concentration of hydrogen peroxide. Cu,Zn-SOD/H2O2-mediated modification of NF-L was significantly inhibited by radical scavenger, spin trap agents and copper chelators. Dityrosine crosslink formation was obtained in Cu,Zn-SOD/H2O2-mediated NF-L aggregates. Antioxidant molecules, carnosine and anserine significantly inhibited the aggregation of NF-L and the formation of dityrosine. This study suggests that copper-mediated NF-L modification may be closely related to oxidative reactions which play a critical role in neurodegenerative diseases.  相似文献   
998.
A novel bacterium was cultivated from an extreme thermal soil in Yellowstone National Park, Wyoming, USA, that at the time of sampling had a pH of 3.9 and a temperature range of 65–92 °C. This organism was found to be an obligate aerobic, non-spore-forming rod, and formed pink-colored colonies. Phylogenetic analysis of the 16S rRNA gene sequence placed this organism in a clade composed entirely of environmental clones most closely related to the phyla Chloroflexi and Thermomicrobia. This bacterium stained gram-positive, contained a novel fatty-acid profile, had cell wall muramic acid content similar to that of Bacillus subtilis (significantly greater than Escherichia coli), and failed to display a lipopolysaccharide profile in SDS-polyacrylamide gels that would be indicative of a gram-negative cell wall structure. Ultrastructure examinations with transmission electron microscopy showed a thick cell wall (approximately 34 nm wide) external to a cytoplasmic membrane. The organism was not motile under the culture conditions used, and electron microscopic examination showed no evidence of flagella. Genomic G+C content was 56.4 mol%, and growth was optimal at 67 °C and at a pH of 7.0. This organism was able to grow heterotrophically on various carbon compounds, would use only oxygen as an electron acceptor, and its growth was not affected by light. A new species of a novel genus is proposed, with YNP1T (T=type strain) being Thermobaculum terrenum gen. nov., sp. nov. (16S rDNA gene GenBank accession AF391972). This bacterium has been deposited in the American Type Culture Collection (ATCC BAA-798) and the University of Oregon Culture Collection of Microorganisms from Extreme Environments (CCMEE 7001).  相似文献   
999.
Reactive oxygen species (ROS) cause oxidative stress and aging. The catalase gene is a key component of the cellular antioxidant defense network. However, the molecular mechanisms that regulate catalase gene expression are poorly understood. In this study, we have identified a DNA replication-related element (DRE; 5'-TATCGATA) in the 5'-flanking region of the Drosophila catalase gene. Gel mobility shift assays revealed that a previously identified factor called DREF (DRE- binding factor) binds to the DRE sequence in the Drosophila catalase gene. We used site-directed mutagenesis and in vitro transient transfection assays to establish that expression of the catalase gene is regulated by DREF through the DRE site. To explore the role of DRE/DREF in vivo, we established transgenic flies carrying a catalase-lacZ fusion gene with or without mutation in the DRE. The beta-galactosidase expression patterns of these reporter transgenic lines demonstrated that the catalase gene is upregulated by DREF through the DRE sequence. In addition, we observed suppression of the ectopic DREF-induced rough eye phenotype by a catalase amorphic Cat(n1) allele, indicating that DREF activity is modulated by the intracellular redox state. These results indicate that the DRE/DREF system is a key regulator of catalase gene expression and provide evidence of cross-talk between the DRE/DREF system and the antioxidant defense system.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号