首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   1篇
  2017年   1篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1987年   2篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
11.
The action of sialyltransferases (STs) on cell surface glycoconjugates is a key process in shaping cell phenotype in a variety of cells mostly involved in migratory and adhesive pathways. The factors determining cell-specific pattern of glycosylation are so far poorly understood. Most STs are resident proteins of the Golgi apparatus, where acceptors are sialylated while they are in transit to the cell surface. To identify putative structural features that may account for their acceptor preference, we analyzed 53 cloned animal and human STs. We could identify conserved regions and peptide motifs representative of ST subfamilies, located at the C-terminal end of the hypervariable region upstream from the L-sialyl motif. Residues 93-100 in human ST6Gal I (hST6Gal I) were shown to be crucial for enzymatic activity when deleted and expressed in CHO cells. The Delta100 hST6Gal I mutant protein was fully recognized by polyclonal anti-hST6Gal I antibodies and followed the intracellular secretory pathway. This indicated that the conserved QVWxKDS sequence is essential for the whole catalytic domain to acquire a biologically active conformation. When full-length epitope-tagged hST6Gal I and hST6GalNAc I constructs were transfected in CHO cells, the alpha-2,6 sialylated glycotope was found to be largely restricted to intracellular resident acceptors and enzymatic activity based on fluorescent lectin staining. In contrast, both enzymes deprived of their membrane anchor and part of the hypervariable region but still possessing the conserved domains exhibited a very efficient transfer of sialic acid to cell surface glycoconjugates. Colocalization of the ST6Gal I mutant proteins with early and late Golgi markers such as giantin or rab6 proteins confirmed that soluble STs migrate forward in these subcompartments where they can act upon newly synthesized acceptors and follow the secretory pathway. It is thus concluded that downstream from the transmembrane domain, native STs possess peptide sequences that allow them to sialylate glycoprotein acceptors selectively along their transit within Golgi stacks.  相似文献   
12.
We present the first release of a database devoted to the ATP-binding cassette (ABC) protein domains (ABCdb). The ABC proteins are involved in a wide variety of physiological processes in Archea, Bacteria and Eucaryota where they are encoded by large families of paralogous genes. The majority of ABC domains energize the transport of compounds across the membranes. In bacteria, ABC transporters are involved in the uptake of a wide range of molecules and in mechanisms of virulence and antibiotic resistance. In eukaryotes, most of them are involved in drug resistance and in human cells, many are associated with diseases. Sequence analysis reveals that members of the ABC superfamily can be organized into sub-families and suggests that they have diverged from common ancestral forms. In this release, ABCdb includes the inventory and assembly of the ABC transporter systems of completely sequenced genomes. In addition to the protein entries, the database comprises information on functional domains, sequence motifs, predicted trans-membrane segments, and signal peptides. It also includes a classification in sub-families of the ABC systems as well as a classification of the different partners of the systems. Evolutionary trees and specific sequence patterns are provided for each sub-family. The database is endowed with a powerful query system and it was interfaced with blastP2 program for similarity searches. ABCdb has been developed in the ACeDB format, a database system developed by Jean Thierry-Mieg and Richard Durbin. ABCdb can be accessed via the World Wide Web (http://ir2lcb.cnrs-mrs.fr/ABCdb/).  相似文献   
13.
We present a graphical tool dedicated to the exploration of bacterial genome rearrangements. The principle of this exploration relies on the reconstruction of ancestral genomes at each internal node of a gene-order-based phylogenetic tree. This tool allows the selection of internal nodes to visualize the rearrangements between the inferred chromosome of this node and its direct descendant on the tree. AVAILABILITY: PEGR is available at the Genopole Toulouse Bioinformatics platform.  相似文献   
14.
Summary The compositional distribution of coding sequences from five vertebrates (Xenopus, chicken, mouse, rat, and human) is shifted toward higher GC values compared to that of the DNA molecules (in the 35–85-kb size range) isolated from the corresponding genomes. This shift is due to the lower GC levels of intergenic sequences compared to coding sequences. In the cold-blooded vertebrate, the two distributions are similar in that GC-poor genes and GC-poor DNA molecules are largely predominant. In contrast, in the warm-blooded vertebrates, GC-rich genes are largely predominant over GC-poor genes, whereas GC-poor DNA molecules are largely predominant over GC-rich DNA molecules. As a consequence, the genomes of warm-blooded vertebrates show a compositional gradient of gene concentration. The compositional distributions of coding sequences (as well as of DNA molecules) showed remarkable differences between chicken and mammals, and between mouse (or rat) and human. Differences were also detected in the compositional distribution of housekeeping and tissue-specific genes, the former being more abundant among GC-rich genes.  相似文献   
15.
16.
Protein coding regions of a genome fragment can be mathematicallypredicted by studying variations in the statistical propertiesor by searching the signals characteristic of the junctionsbetween the coding and non-coding regions. We propose here anew statistical method using correspondence analysis. This methoddoes not use any reference codon set but takes into accountthe codon usage homogeneity along the studied genome fragment.Comparison with previously published methods especially the‘codon usage method’ of Staden has been made, andtwo examples are presented here. Applications to analysis ofprokaryotic operon and eukaryotic split genes are also discussed.Use of the method has also shown two structures not previouslydescribed: i) in the human prt gene, a strong triplet structureexists in a non-coding region; ii) in the human tp-a codon usageis not uniform between the different exons Received on September 25, 1986  相似文献   
17.
The opportunistic pathogen Pseudomonas aeruginosa has redundant molecular systems that contribute to its pathogenicity. Those assembling fimbrial structures promote complex organized community lifestyle. We characterized a new 5.8 kb genetic locus, cupE, that includes the conserved usher- and chaperone-encoding genes. This locus, widely conserved in different bacterial species, contains four additional genes encoding non-archetypal fimbrial subunits. We first evidenced that the cupE gene cluster was specifically expressed in biofilm conditions and was responsible for fibre assembly containing at least CupE1 protein, at the bacterial cell surface. These fimbriae not only played a significant role in the early stages (microcolony and macrocolony formation) but also in shaping 3D mushrooms during P. aeruginosa biofilm development. Using wide-genome transposon mutagenesis, we identified the PprAB two-component system (TCS) as a regulator of cupE expression, and further demonstrated the involvement of the PprAB TCS in direct CupE fimbrial assembly activation. Thus, this TCS represents a new regulatory element controlling the transition between planktonic and community lifestyles in P. aeruginosa.  相似文献   
18.
Identifying potential tRNA genes in genomic DNA sequences.   总被引:16,自引:0,他引:16  
We have developed an algorithm that automatically and reproducibly identifies potential tRNA genes in genomic DNA sequences, and we present a general strategy for testing the sensitivity of such algorithms. This algorithm is useful for the flagging and characterization of long genomic sequences that have not been experimentally analyzed for identification of functional regions, and for the scanning of nucleotide sequence databases for errors in the sequences and the functional assignments associated with them. In an exhaustive scan of the GenBank database, 97.5% of the 744 known tRNA genes were correctly identified (true-positives), and 42 previously unidentified sequences were predicted to be tRNAs. A detailed analysis of these latter predictions reveals that 16 of the 42 are very similar to known tRNA genes, and we predict that they do, in fact, code for tRNA, yielding a false-positive rate for the algorithm of 0.003%. The new algorithm and testing strategy are a considerable improvement over any previously described strategies for recognizing tRNA genes, and they allow detections of genes (including introns) embedded in long genomic sequences.  相似文献   
19.
20.
Our knowledge of the functions of metazoan ribosomal proteins in ribosome synthesis remains fragmentary. Using siRNAs, we show that knockdown of 31 of the 32 ribosomal proteins of the human 40S subunit (ribosomal protein of the small subunit [RPS]) strongly affects pre–ribosomal RNA (rRNA) processing, which often correlates with nucleolar chromatin disorganization. 16 RPSs are strictly required for initiating processing of the sequences flanking the 18S rRNA in the pre-rRNA except at the metazoan-specific early cleavage site. The remaining 16 proteins are necessary for progression of the nuclear and cytoplasmic maturation steps and for nuclear export. Distribution of these two subsets of RPSs in the 40S subunit structure argues for a tight dependence of pre-rRNA processing initiation on the folding of both the body and the head of the forming subunit. Interestingly, the functional dichotomy of RPS proteins reported in this study is correlated with the mutation frequency of RPS genes in Diamond-Blackfan anemia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号