首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   356篇
  免费   37篇
  2022年   3篇
  2021年   5篇
  2020年   5篇
  2019年   3篇
  2018年   7篇
  2017年   7篇
  2016年   11篇
  2015年   13篇
  2014年   15篇
  2013年   20篇
  2012年   19篇
  2011年   19篇
  2010年   19篇
  2009年   9篇
  2008年   21篇
  2007年   20篇
  2006年   12篇
  2005年   13篇
  2004年   21篇
  2003年   28篇
  2002年   15篇
  2001年   2篇
  2000年   7篇
  1999年   6篇
  1997年   6篇
  1996年   3篇
  1995年   1篇
  1994年   4篇
  1993年   4篇
  1992年   5篇
  1991年   6篇
  1990年   10篇
  1989年   5篇
  1988年   3篇
  1987年   2篇
  1986年   4篇
  1985年   1篇
  1984年   4篇
  1983年   2篇
  1982年   5篇
  1981年   4篇
  1980年   3篇
  1978年   2篇
  1977年   4篇
  1976年   2篇
  1974年   5篇
  1968年   1篇
  1955年   2篇
  1941年   1篇
  1935年   1篇
排序方式: 共有393条查询结果,搜索用时 468 毫秒
81.
An urban watershed continuum framework hypothesizes that there are coupled changes in (1) carbon and nitrogen cycling, (2) groundwater-surface water interactions, and (3) ecosystem metabolism along broader hydrologic flowpaths. It expands our understanding of urban streams beyond a reach scale. We evaluated this framework by analyzing longitudinal patterns in: C and N concentrations and mass balances, groundwater-surface interactions, and stream metabolism and carbon quality from headwaters to larger order streams. 52 monitoring sites were sampled seasonally and monthly along the Gwynns Falls watershed, which drains 170 km2 of the Baltimore Long-Term Ecological Research site. Regarding our first hypothesis of coupled C and N cycles, there were significant inverse linear relationships between nitrate and dissolved organic carbon (DOC) and nitrogen longitudinally (P < 0.05). Regarding our second hypothesis of coupled groundwater-surface water interactions, groundwater seepage and leaky piped infrastructure contributed significant inputs of water and N to stream reaches based on mass balance and chloride/fluoride tracer data. Regarding our third hypothesis of coupled ecosystem metabolism and carbon quality, stream metabolism increased downstream and showed potential to enhance DOC lability (e.g., ~4 times higher mean monthly primary production in urban streams than forest streams). DOC lability also increased with distance downstream and watershed urbanization based on protein and humic-like fractions, with major implications for ecosystem metabolism, biological oxygen demand, and CO2 production and alkalinity. Overall, our results showed significant in-stream retention and release (0–100 %) of watershed C and N loads over the scale of kilometers, seldom considered when evaluating monitoring, management, and restoration effectiveness. Given dynamic transport and retention across evolving spatial scales, there is a strong need to longitudinally and synoptically expand studies of hydrologic and biogeochemical processes beyond a stream reach scale along the urban watershed continuum.  相似文献   
82.
Discovering the function of an unknown protein, particularly one with neither structural nor functional correlates, is a daunting task. Interaction analyses determine binding partners, whereas DNA transfection, either transient or stable, leads to intracellular expression, though not necessarily at physiologically relevant levels. In theory, direct intracellular protein delivery (protein transduction) provides a conceptually simpler alternative, but in practice the approach is problematic. Domains such as HIV TAT protein are valuable, but their effectiveness is protein specific. Similarly, the delivery of intact proteins via endocytic pathways (e.g. using liposomes) is problematic for functional analysis because of the potential for protein degradation in the endosomes/lysosomes. Consequently, recent reports that microspheres can deliver bio-cargoes into cells via a non-endocytic, energy-independent pathway offer an exciting and promising alternative for in vitro delivery of functional protein. In order for such promise to be fully exploited, microspheres are required that (i) are stably linked to proteins, (ii) can deliver those proteins with good efficiency, (iii) release functional protein once inside the cells, and (iv) permit concomitant tracking. Herein, we report the application of microspheres to successfully address all of these criteria simultaneously, for the first time. After cellular uptake, protein release was autocatalyzed by the reducing cytoplasmic environment. Outside of cells, the covalent microsphere–protein linkage was stable for ≥90 h at 37 °C. Using conservative methods of estimation, 74.3% ± 5.6% of cells were shown to take up these microspheres after 24 h of incubation, with the whole process of delivery and intracellular protein release occurring within 36 h. Intended for in vitro functional protein research, this approach will enable study of the consequences of protein delivery at physiologically relevant levels, without recourse to nucleic acids, and offers a useful alternative to commercial protein transfection reagents such as Chariot™. We also provide clear immunostaining evidence to resolve residual controversy surrounding FACS-based assessment of microsphere uptake.Many proteomic techniques can be used to build a picture of a protein with unknown function, but eventually the individual protein''s activity must be studied. Traditional transfection of encoding DNA permits intracellular expression, but often at uncontrolled, nonphysiological levels. Moreover, DNA transfection can neither deliver protein–inhibitor complexes nor readily deliver multiple proteins in a single experiment and thus exploit knowledge from proteomic protein–protein interaction analyses. In contrast, a truly generic protein transduction reagent could theoretically address all possibilities. We believe that polymeric microspheres could fulfill this role, and we have recently synthesized and characterized dual-functionalized, bio-compatible microspheres that permit intracellular tracking (1). Herein, we now report the development of those microspheres into a protein transduction reagent that can carry protein stably, deliver it efficiently to cells, release the protein in the cytoplasm, and concurrently permit fluorescent imaging of transduced cells.Phagocytosis of microspheres was first observed over 30 years ago (2). Perhaps more unexpectedly, uptake of polystyrene microspheres has recently been reported in many other, nonphagocytic cell types, some of which are traditionally considered to be resistant to DNA transfection and/or protein transduction. For example, microspheres are taken up readily by primary immune cells (3), embryonic stem cells (4), human neural stem cells (5), differentiating mouse neural stem cells (5), and several nonphagocytic cell lines (3, 6, 7). In all instances, the reported efficiency of cellular uptake is high, with “beadfection” of up to 90% of cells being typical (4, 5, 8). No additional reagents aside from the microspheres themselves are required in order to promote cellular uptake, and critically, no toxicity has been observed in any of the cell types beadfected, including HEK293T and L929 cells 2 days after beadfection (8), E14g2a embryonic stem cells 3 days after beadfection (4), and mouse and human neural stem cells 30 days after beadfection (5). In the latter case, the microspheres did not have any deleterious effect on the differentiation of human neural stem cells 30 days after beadfection (5).The mechanism of microsphere entry is also nontoxic, and compelling evidence has been published recently that polystyrene-based microspheres (from 0.2 μm to as large as 2 μm) enter cells via a non-endocytosis, energy-independent mechanism (8). Although unusual, such a mechanism is consistent with claims for the commercial reagent Chariot™ (9). Interestingly, a non-endocytic, energy-independent mechanism has also been reported for the entry of rhenium cluster/polymer hybrid particles into HeLa cells (10). Failure of the microspheres to be endocytosed, at least via a clathrin-dependent mechanism, is perhaps to be predicted, as their diameter considerably exceeds that of clathrin-coated vesicles (typically 100 nm). Bradley and co-workers (8) propose that the entry mechanism for polystyrene-based microspheres is one of passive diffusion in which the microsphere interacts with the membrane, anchors, and, after membrane reorganization, enters the cell, resulting in direct cytoplasmic localization.For functional analysis following transduction, the avoidance of endocytosis or phagocytosis is particularly relevant, as endocytosed particles are destined for endosomes and then, normally, for the lysosomes. The lowered pH of the endosome and, more seriously, the acidic and hydrolytic environment of the lysosome risk disruption of the protein structure and/or function. In contrast, for vaccine delivery (where liposomes can be employed), such exposure is advantageous because protein breakdown forms an essential part of antigen presentation. The potential for protein breakdown in endosomes is also irrelevant for the delivery of protein/peptide drugs such as insulin (for which microencapsulation has proven effective for long-term controlled drug release (11, 12)), as these drugs typically function in the extracellular environment, often exerting their effects by binding to membrane-bound receptors. Thus, although vehicles such as liposomes and nanoparticles are employed both extensively and successfully as drug and vaccine delivery vectors in vivo (1316), they are far from ideal for studying the biological effect of a delivered protein in vitro. Colloidal particles are also endocytosed (17), and therefore these delivery vehicles may present similar disadvantages.Traditionally, protein transduction domains such as HIV TAT (1820) or other cell-penetrating peptides (2123) are used to deliver proteins to cells. Whereas positively charged peptides such as TAT are thought to enter the cells via macropinocytosis (reviewed in Ref. 24), a recent publication suggests that at least some cell-penetrating peptide/bio-cargo complexes (siRNA) are endocytosed (25). Here, although the cargoes avoid the lysosomes, acidification of the endosome is required for endosomal escape of the delivered cargo, and indeed, acidification appears to be a recurring requirement for endosomal escape of biomolecular cargoes using cell-penetrating peptides (reviewed in Ref. 24). Consequently, cell-penetrating peptides are unlikely to become generic tools for functional protein delivery.In contrast, the recent demonstrations that polystyrene microspheres can carry a variety of molecular cargoes with them into the cytoplasm (4, 5, 7, 26, 27) make them particularly exciting as potential vectors for delivering functional proteins and/or protein complexes. β-Galactosidase retains its activity when delivered via this route (7), confirming the potential of microspheres to act as generic protein-delivery vehicles. However, delivered proteins have to date remained tethered to the microspheres, and thus existing studies are limited to proteins that are active in the cytoplasm and, critically, retain their activity when immobilized on polystyrene. For the broad-based study of protein function, the subsequent release of the delivered protein within the cell is desirable.An ideal technology would deliver any protein to any cell type and release that protein in the cell, where it could undertake its normal activity. Here we report the first example of such a microsphere-based approach. Protein is delivered on microspheres and then released in the cell by the reducing cytoplasmic environment. This release is mediated by a linker that attaches the protein stably and covalently to the microspheres in vitro but intracellularly is cleaved over a period of hours. It has already been shown that microspheres are taken up with high efficiency by a range of cell types and can carry a variety of cargoes. Because the chemistry of the linker described herein is amenable to linkage with any molecule containing a free amine moiety, the technology provides a new generic platform for in vitro, cell-based delivery of individual proteins, protein complexes, protein mixtures, or other amino-functionalized molecules.  相似文献   
83.
Restoration of correct neural activity following central nervous system (CNS) damage requires the replacement of degenerated axons with newly outgrowing, functional axons. Unfortunately, spontaneous regeneration is largely lacking in the adult mammalian CNS. In order to establish successful regenerative therapies, an improved understanding of axonal outgrowth and the various molecules influencing it, is highly needed. Matrix metalloproteinases (MMPs) constitute a family of zinc‐dependent proteases that were sporadically reported to influence axon outgrowth. Using an ex vivo retinal explant model, we were able to show that broad‐spectrum MMP inhibition reduces axon outgrowth of mouse retinal ganglion cells (RGCs), implicating MMPs as beneficial factors in axonal regeneration. Additional studies, using more specific MMP inhibitors and MMP‐deficient mice, disclosed that both MMP‐2 and MT1‐MMP, but not MMP‐9, are involved in this process. Furthermore, administration of a novel antibody to MT1‐MMP that selectively blocks pro‐MMP‐2 activation revealed a functional co‐involvement of these proteinases in determining RGC axon outgrowth. Subsequent immunostainings showed expression of both MMP‐2 and MT1‐MMP in RGC axons and glial cells. Finally, results from combined inhibition of MMP‐2 and β1‐integrin were suggestive for a functional interaction between these molecules. Overall, our data indicate MMP‐2 and MT1‐MMP as promising axonal outgrowth‐promoting molecules.

  相似文献   

84.
Ozone-sensitive and tolerant genotypes of snap bean ( Phaseolus vulgaris L.) were compared for differences in leaf ascorbic acid (vitamin C), glutathione and α -tocopherol (vitamin E) content to determine whether antioxidant levels were related to ozone tolerance. Seven genotypes were grown in pots under field conditions during the months of June and July. Open top chambers were used to establish either a charcoal filtered (CF) air control (36 nmol mol−1 ozone) or a treatment where CF air was supplemented with ozone from 8:00 to 20:00 h with a daily 12 h mean of 77 nmol mol−1. Fully expanded leaves were analyzed for ascorbic acid, chlorophyll, glutathione, guaiacol peroxidase (EC 1.11.1.7) and α -tocopherol. Leaf ascorbic acid was the only variable identified as a potential factor in ozone tolerance. Tolerant genotypes contained more ascorbic acid than sensitive lines, but the differences were not always statistically significant. Genetic differences in glutathione and α -tocopherol were also observed, but no relationship with ozone tolerance was found. Guaiacol peroxidase activity and leaf α -tocopherol content increased in all genotypes following a one week ozone exposure, indicative of a general ozone stress response. Ozone had little effect on the other variables tested. Overall, ozone sensitive and tolerant plants were not clearly distinguished by differences in leaf antioxidant content. The evidence suggests that screening for ozone tolerance based on antioxidant content is not a reliable approach.  相似文献   
85.
86.
Conditions for the optimal use of cyanuric chloride-activated (CCA) paper in Southern transfer hybridization experiments of genomic DNA were investigated. They depend critically on pH and ionic strength during transfer and on the composition of the hybridization solution. Simplified hybridization conditions using a SSC/dextran sulfate system at 65 degrees C without sodium dodecyl sulfate and the complex Denhardt's solution are applied. CCA paper allows repeated use in hybridization experiments. Under optimized conditions CCA paper allows a more sensitive detection of single-copy gene sequences in the subpicogram range than do nylon membranes. Application of these transfer and hybridization conditions with our newly developed CCA paper to carrier determination and prediction of the healthy male haplotype demonstrates its usefulness for prenatal counseling of a Duchenne muscular dystrophy family.  相似文献   
87.
Active transport of vitamin B12 and Fe(III)-siderophore complexes across the outer membrane of Escherichia coli appears to be dependent upon the ability of the TonB protein to couple cytoplasmic membrane-generated protonmotive force to outer membrane receptors. TonB is supported in this role by an auxiliary protein, ExbB, which, in addition to stabilizing TonB against the activities of endogenous envelope proteases, directly contributes to the energy transduction process. The topological partitioning of TonB and ExbB to either side of the cytoplasmic membrane restricts the sites of interaction between these proteins primarily to their transmembrane domains. In this study, deletion of valine 17 within the amino-terminal transmembrane anchor of TonB resulted in complete loss of TonB activity, as well as loss of detectable in vivo crosslinking into a 59 kDa complex believed to contain ExbB. The ΔV17 mutation had no effect on TonB export. The loss of crosslinking appeared to reflect conformational changes in the TonB/ExbB pair rather than loss of interaction since ExbB was still required for some stabilization of TonBΔV17. Molecular modeling suggested that the ΔV17 mutation caused a significant change in the predicted conserved face of the TonB amino-terminal membrane anchor. TonBΔV17 was unable to achieve the 23 kDa proteinase K-resistant form in lysed sphaeroplasts that is characteristic of active TonB. Wild-type TonB also failed to achieve the proteinase K-resistant configuration when ExbB was absent. Taken together these results suggested that the ΔV17 mutation interrupted productive TonB–ExbB interactions. The apparent ability to crosslink to ExbB as well as a limited ability to transduce energy were restored by a second mutation (A39E) in or near the first predicted transmembrane domain of the ExbB protein. Consistent with the weak suppression, a 23 kDa proteinase K-resistant form of TonBΔV17 was not observed in the presence of ExbBA39E. Neither the ExbBA39E allele nor the absence of ExbB affected TonB or TonBΔV17 export. Unlike the tonBΔV17 mutation, the exbBA39E mutation did not greatly alter a modelled ExbB transmembrane domain structure. Furthermore, the suppressor ExbBA39E functioned normally with wild-type TonB, suggesting that the suppressor was not allele specific. Contrary to expectations, the TonBδV17, ExbBA39E pair resulted in a TonB with a greatly reduced half-life (≅ 10 min). These results together with protease susceptibility studies suggest that ExbB functions by modulating the conformation of TonB.  相似文献   
88.
89.
90.
The dct locus of Rhodobacter capsulatus encodes a high-affinity transport system for the C4-dicarboxylates malate, succinate, and fumarate. The nucleotide sequence of the region downstream of the previously sequenced dctP gene (encoding a periplasmic C4-dicarboxylate-binding protein) was determined. Two open reading frames (ORFs) of 681 bp (dctQ) and 1,320 bp (dctM) were identified as additional dct genes by insertional mutagenesis and complementation studies. DctQ (24,763 Da) and DctM (46,827 Da) had hydropathic profiles consistent with the presence of 4 and 12 potential transmembrane segments, respectively, and were localized in the cytoplasmic membrane fraction after heterologous expression of the dctQM ORFs in Escherichia coli. DctP, DctQ, and DctM were found to be unrelated to known transport proteins in the ABC (ATP-binding cassette) superfamily but were shown to be homologous with the products of previously unidentified ORFs in a number of gram-negative bacteria, including Bordetella pertussis, E. coli, Salmonella typhimurium, Haemophilus influenzae, and Synechocystis sp. strain PCC6803. An additional ORF (rypA) downstream of dctM encodes a protein with sequence similarity to eukaryotic protein-tyrosine phosphatases, but interposon mutagenesis of this ORF did not result in a Dct- phenotype. Complementation of a Rhizobium meliloti dctABD deletion mutant by heterologous expression of the dctPQM genes from R. capsulatus demonstrated that no additional structural genes were required to form a functional transport system. Transport via the Dct system was vanadate insensitive, and in uncoupler titrations with intact cells, the decrease in the rate of succinate transport correlated closely with the fall in membrane potential but not with the cellular ATP concentration, implying that the proton motive force, rather than ATP hydrolysis, drives uptake. It is concluded that the R. capsulatus Dct system is a new type of periplasmic secondary transporter and that similar, hitherto-unrecognized systems are widespread in gram-negative bacteria. The name TRAP (for tripartite ATP-independent periplasmic) transporters is proposed for this new group.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号