首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2003篇
  免费   153篇
  2156篇
  2023年   5篇
  2022年   22篇
  2021年   30篇
  2020年   24篇
  2019年   24篇
  2018年   24篇
  2017年   29篇
  2016年   48篇
  2015年   106篇
  2014年   105篇
  2013年   140篇
  2012年   176篇
  2011年   165篇
  2010年   119篇
  2009年   103篇
  2008年   146篇
  2007年   144篇
  2006年   109篇
  2005年   118篇
  2004年   110篇
  2003年   115篇
  2002年   59篇
  2001年   21篇
  2000年   14篇
  1999年   20篇
  1998年   23篇
  1997年   12篇
  1996年   17篇
  1995年   11篇
  1994年   8篇
  1993年   8篇
  1992年   12篇
  1991年   10篇
  1990年   2篇
  1989年   5篇
  1988年   3篇
  1987年   4篇
  1986年   10篇
  1985年   5篇
  1984年   2篇
  1983年   4篇
  1982年   8篇
  1981年   5篇
  1980年   2篇
  1978年   4篇
  1977年   4篇
  1976年   4篇
  1975年   4篇
  1972年   5篇
  1957年   2篇
排序方式: 共有2156条查询结果,搜索用时 15 毫秒
21.
In this review, we describe recent results concerning the genetics of sex determination in mammals. Particularly, we developed the study of the FOXL2 gene and its implication in genetic anomalies in goats (PIS mutation) and humans (BPES). We present the expression of FOXL2 in the ovaries of different species.  相似文献   
22.
The formation and maintenance of microtubules requires their polymerisation, but little is known about how this polymerisation is regulated in cells. Focussing on the essential microtubule bundles in axons of Drosophila and Xenopus neurons, we show that the plus-end scaffold Eb1, the polymerase XMAP215/Msps and the lattice-binder Tau co-operate interdependently to promote microtubule polymerisation and bundle organisation during axon development and maintenance. Eb1 and XMAP215/Msps promote each other’s localisation at polymerising microtubule plus-ends. Tau outcompetes Eb1-binding along microtubule lattices, thus preventing depletion of Eb1 tip pools. The three factors genetically interact and show shared mutant phenotypes: reductions in axon growth, comet sizes, comet numbers and comet velocities, as well as prominent deterioration of parallel microtubule bundles into disorganised curled conformations. This microtubule curling is caused by Eb1 plus-end depletion which impairs spectraplakin-mediated guidance of extending microtubules into parallel bundles. Our demonstration that Eb1, XMAP215/Msps and Tau co-operate during the regulation of microtubule polymerisation and bundle organisation, offers new conceptual explanations for developmental and degenerative axon pathologies.  相似文献   
23.
N-Linked glycosylation is an essential post-translational protein modification in the eukaryotic cell. The initial transfer of an oligosaccharide from a lipid carrier onto asparagine residues within a consensus sequon is catalyzed by oligosaccharyltransferase (OST). The first X-ray structure of a complete bacterial OST enzyme, Campylobacter lari PglB, was recently determined. To understand the mechanism of PglB, we have quantified sequon binding and glycosylation turnover in vitro using purified enzyme and fluorescently labeled, synthetic peptide substrates. Using fluorescence anisotropy, we determined a dissociation constant of 1.0 μm and a strict requirement for divalent metal ions for consensus (DQNAT) sequon binding. Using in-gel fluorescence detection, we quantified exceedingly low glycosylation rates that remained undetected using in vivo assays. We found that an alanine in the −2 sequon position, converting the bacterial sequon to a eukaryotic one, resulted in strongly lowered sequon binding, with in vitro turnover reduced 50,000-fold. A threonine is preferred over serine in the +2 sequon position, reflected by a 4-fold higher affinity and a 1.2-fold higher glycosylation rate. The interaction of the +2 sequon position with PglB is modulated by isoleucine 572. Our study demonstrates an intricate interplay of peptide and metal binding as the first step of protein N-glycosylation.  相似文献   
24.

Background

Accurate outcome prediction in neuroblastoma, which is necessary to enable the optimal choice of risk-related therapy, remains a challenge. To improve neuroblastoma patient stratification, this study aimed to identify prognostic tumor DNA methylation biomarkers.

Results

To identify genes silenced by promoter methylation, we first applied two independent genome-wide methylation screening methodologies to eight neuroblastoma cell lines. Specifically, we used re-expression profiling upon 5-aza-2''-deoxycytidine (DAC) treatment and massively parallel sequencing after capturing with a methyl-CpG-binding domain (MBD-seq). Putative methylation markers were selected from DAC-upregulated genes through a literature search and an upfront methylation-specific PCR on 20 primary neuroblastoma tumors, as well as through MBD- seq in combination with publicly available neuroblastoma tumor gene expression data. This yielded 43 candidate biomarkers that were subsequently tested by high-throughput methylation-specific PCR on an independent cohort of 89 primary neuroblastoma tumors that had been selected for risk classification and survival. Based on this analysis, methylation of KRT19, FAS, PRPH, CNR1, QPCT, HIST1H3C, ACSS3 and GRB10 was found to be associated with at least one of the classical risk factors, namely age, stage or MYCN status. Importantly, HIST1H3C and GNAS methylation was associated with overall and/or event-free survival.

Conclusions

This study combines two genome-wide methylation discovery methodologies and is the most extensive validation study in neuroblastoma performed thus far. We identified several novel prognostic DNA methylation markers and provide a basis for the development of a DNA methylation-based prognostic classifier in neuroblastoma.  相似文献   
25.

Background

Transposable Elements (TEs) are key components that shape the organization and evolution of genomes. Fungi have developed defense mechanisms against TE invasion such as RIP (Repeat-Induced Point mutation), MIP (Methylation Induced Premeiotically) and Quelling (RNA interference). RIP inactivates repeated sequences by promoting Cytosine to Thymine mutations, whereas MIP only methylates TEs at C residues. Both mechanisms require specific cytosine DNA Methyltransferases (RID1/Masc1) of the Dnmt1 superfamily.

Results

We annotated TE sequences from 10 fungal genomes with different TE content (1-70%). We then used these TE sequences to carry out a genome-wide analysis of C to T mutations biases. Genomes from either Ascomycota or Basidiomycota that were massively invaded by TEs (Blumeria, Melampsora, Puccinia) were characterized by a low frequency of C to T mutation bias (10-20%), whereas other genomes displayed intermediate to high frequencies (25-75%). We identified several dinucleotide signatures at these C to T mutation sites (CpA, CpT, and CpG). Phylogenomic analysis of fungal Dnmt1 MTases revealed a previously unreported association between these dinucleotide signatures and the presence/absence of sub-classes of Dnmt1.

Conclusions

We identified fungal genomes containing large numbers of TEs with many C to T mutations associated with species-specific dinucleotide signatures. This bias suggests that a basic defense mechanism against TE invasion similar to RIP is widespread in fungi, although the efficiency and specificity of this mechanism differs between species. Our analysis revealed that dinucleotide signatures are associated with the presence/absence of specific Dnmt1 subfamilies. In particular, an RID1-dependent RIP mechanism was found only in Ascomycota.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1347-1) contains supplementary material, which is available to authorized users.  相似文献   
26.
27.
Modeling plant morphogenesis   总被引:2,自引:0,他引:2  
  相似文献   
28.
29.
Interleukin-6 (IL-6) is a cytokine involved in different physiologic and pathophysiologic processes including carcinogenesis. In 2003, a single nucleotide polymorphism (−174G/C) of the IL-6 gene promoter has been linked to breast cancer prognosis in node-positive (N+) breast cancer patients. Since, different studies have led to conflicting conclusions about its role as a prognostic and/or diagnostic marker. The primary aim of our study was to investigate the link between −174G/C polymorphism and breast cancer risk on the one hand, and −174G/C polymorphism and prognosis in different groups of patients: sporadic N+ breast cancers (n = 138), sporadic N− breast cancers (n = 95) and familial breast cancer (n = 60) on the other hand. The variables of interest were disease-free survival and overall survival. The secondary aim of the study was to screen IL-6 gene promoter using direct sequencing to identify new polymorphisms in our French Caucasian breast cancer population. No association or trend of association between −174G/C polymorphism of IL-6 gene promoter gene and breast cancer diagnosis or prognosis was shown, even in meta-analyses. Furthermore, we have identified four novel polymorphic sites in the IL-6 gene promoter region: −764G → A, −757C → T, −233T → A, 15C → A.  相似文献   
30.
We describe a non‐invasive, PCR‐RFLP‐based method that allows reliable determination of the European water frog species Pelophylax lessonae and Pelophylax ridibundus and the hybrid form Pelophylax esculentus. Maximum‐likelihood analysis of ITS2 sequences revealed two robust monophyletic clades corresponding to water frogs of the P. lessonae and P. ridibundus groups. Three restriction enzymes (KpnI, HaeII, and SmaI) were used to digest three conserved ITS2 domains. Taxonomic identification was unambiguous; the three restriction enzymes gave the same results. A French reference sample was identified using allozyme electrophoresis. Our PCR‐RFLP method confirmed circa 83% of identification of the allozyme method. We conclude that the difference between identifications was caused by introgression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号