首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5267篇
  免费   388篇
  国内免费   1篇
  2023年   14篇
  2022年   40篇
  2021年   78篇
  2020年   44篇
  2019年   46篇
  2018年   52篇
  2017年   65篇
  2016年   111篇
  2015年   190篇
  2014年   201篇
  2013年   253篇
  2012年   355篇
  2011年   357篇
  2010年   228篇
  2009年   194篇
  2008年   303篇
  2007年   276篇
  2006年   260篇
  2005年   299篇
  2004年   253篇
  2003年   280篇
  2002年   265篇
  2001年   76篇
  2000年   54篇
  1999年   85篇
  1998年   87篇
  1997年   67篇
  1996年   51篇
  1995年   49篇
  1994年   54篇
  1993年   57篇
  1992年   75篇
  1991年   49篇
  1990年   47篇
  1989年   37篇
  1988年   51篇
  1987年   42篇
  1986年   26篇
  1985年   47篇
  1984年   50篇
  1983年   27篇
  1982年   37篇
  1981年   45篇
  1980年   35篇
  1979年   26篇
  1978年   31篇
  1977年   26篇
  1976年   20篇
  1974年   23篇
  1961年   11篇
排序方式: 共有5656条查询结果,搜索用时 16 毫秒
961.
PAS kinase (PASK) is a glucose-regulated protein kinase involved in the control of pancreatic islet hormone release and insulin sensitivity. We aimed here to identify mutations in the PASK gene that may be associated with young-onset diabetes in humans. We screened 18 diabetic probands with unelucidated maturity-onset diabetes of the young (MODY). We identified two rare nonsynonymous mutations in the PASK gene (p.L1051V and p.G1117E), each of which was found in a single MODY family. Wild type or mutant PASKs were expressed in HEK 293 cells. Kinase activity of the affinity-purified proteins was assayed as autophosphorylation at amino acid Thr307 or against an Ugp1p-derived peptide. Whereas the PASK p.G1117E mutant displayed a ~25% increase with respect to wild type PASK in the extent of autophosphorylation, and a ~2-fold increase in kinase activity toward exogenous substrates, the activity of the p.L1051V mutant was unchanged. Amino acid Gly1117 is located in an α helical region opposing the active site of PASK and may elicit either: (a) a conformational change that increases catalytic efficiency or (b) a diminished inhibitory interaction with the PAS domain. Mouse islets were therefore infected with adenoviruses expressing wild type or mutant PASK and the regulation of insulin secretion was examined. PASK p.G1117E-infected islets displayed a 4-fold decrease in glucose-stimulated (16.7 versus 3 mM) insulin secretion, chiefly reflecting a 4.5-fold increase in insulin release at low glucose. In summary, we have characterized a rare mutation (p.G1117E) in the PASK gene from a young-onset diabetes family, which modulates glucose-stimulated insulin secretion.  相似文献   
962.
Missense and protein-truncating mutations of the human potassium-chloride co-transporter 3 gene (KCC3) cause hereditary motor and sensory neuropathy with agenesis of the corpus callosum (HMSN/ACC), which is a severe neurodegenerative disease characterized by axonal dysfunction and neurodevelopmental defects. We previously reported that KCC3-truncating mutations disrupt brain-type creatine kinase-dependent activation of the co-transporter through the loss of its last 140 amino acids. Here, we report a novel and more distal HMSN/ACC-truncating mutation (3402C → T; R1134X) that eliminates only the last 17 residues of the protein. This small truncation disrupts the interaction with brain-type creatine kinase in mammalian cells but also affects plasma membrane localization of the mutant transporter. Although it is not truncated, the previously reported HMSN/ACC-causing 619C → T (R207C) missense mutation also leads to KCC3 loss of function in Xenopus oocyte flux assay. Immunodetection in Xenopus oocytes and in mammalian cultured cells revealed a decreased amount of R207C at the plasma membrane, with significant retention of the mutant proteins in the endoplasmic reticulum. In mammalian cells, curcumin partially corrected these mutant protein mislocalizations, with more protein reaching the plasma membrane. These findings suggest that mis-trafficking of mutant protein is an important pathophysiological feature of HMSN/ACC causative KCC3 mutations.  相似文献   
963.
964.
The synthesis and antibacterial activity of benzo[f][1,7]naphtyridone derivatives are reported. These compounds are potent antibacterial agents with a Gram-positive spectrum of activity. They are active against multi-resistant cocci, especially Staphylococcus aureus strains. Their physico-chemical and biological properties make them particularly suitable for topical antibacterial use.  相似文献   
965.
We have studied the modulation of gating properties of the Ca2+-permeable, cation channel TRPV4 transiently expressed in HEK293 cells. The phorbol ester 4alphaPDD transiently activated a current through TRPV4 in the presence of extracellular Ca2+. Increasing the concentration of extracellular Ca2+ ([Ca2+](e)) reduced the current amplitude and accelerated its decay. This decay was dramatically delayed in the absence of [Ca2+](e). It was also much slower in the presence of [Ca2+](e) in a mutant channel, obtained by a point mutation in the 6th transmembrane domain, F707A. Mutant channels, containing a single mutation in the C-terminus of TRPV4 (E797), were constitutively open. In conclusion, gating of the 4alphaPDD-activated TRPV4 channel depends on both extra- and intracellular Ca2+, and is modulated by mutations of single amino acid residues in the 6th transmembrane domain and the C-terminus of the TRPV4 protein.  相似文献   
966.
Acquired tolerance to temperature extremes   总被引:21,自引:0,他引:21  
  相似文献   
967.
Nitric oxide (NO) and zinc (Zn2+) are implicated in the pathogenesis of cerebral ischemia and neurodegenerative diseases. However, their relationship and the molecular mechanism of their neurotoxic effects remain unclear. Here we show that addition of exogenous NO or NMDA (to increase endogenous NO) leads to peroxynitrite (ONOO-) formation and consequent Zn2+ release from intracellular stores in cerebrocortical neurons. Free Zn2+ in turn induces respiratory block, mitochondrial permeability transition (mPT), cytochrome c release, generation of reactive oxygen species (ROS), and p38 MAP kinase activation. This pathway leads to caspase-independent K+ efflux with cell volume loss and apoptotic-like death. Moreover, Zn2+ chelators, ROS scavengers, Bcl-xL, dominant-interfering p38, or K+ channel blockers all attenuate NO-induced K+ efflux, cell volume loss, and neuronal apoptosis. Thus, these data establish a new form of crosstalk between NO and Zn2+ apoptotic signal transduction pathways that may contribute to neurodegeneration.  相似文献   
968.
The aims of this study were to develop strains of lactic acid bacteria (LAB) having both immunomodulatory and antioxidant properties and to evaluate their anti-inflammatory effects both in vitro, in different cellular models, and in vivo, in a mouse model of colitis. Different Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains were cocultured with primary cultures of mononuclear cells. Analysis of the pro- and anti-inflammatory cytokines secreted by these cells after coincubation with candidate bacteria revealed that L. delbrueckii subsp. bulgaricus CRL 864 and S. thermophilus CRL 807 display the highest anti-inflammatory profiles in vitro. Moreover, these results were confirmed in vivo by the determination of the cytokine profiles in large intestine samples of mice fed with these strains. S. thermophilus CRL 807 was then transformed with two different plasmids harboring the genes encoding catalase (CAT) or superoxide dismutase (SOD) antioxidant enzymes, and the anti-inflammatory effects of recombinant streptococci were evaluated in a mouse model of colitis induced by trinitrobenzenesulfonic acid (TNBS). Our results showed a decrease in weight loss, lower liver microbial translocation, lower macroscopic and microscopic damage scores, and modulation of the cytokine production in the large intestines of mice treated with either CAT- or SOD-producing streptococci compared to those in mice treated with the wild-type strain or control mice without any treatment. Furthermore, the greatest anti-inflammatory activity was observed in mice receiving a mixture of both CAT- and SOD-producing streptococci. The addition of L. delbrueckii subsp. bulgaricus CRL 864 to this mixture did not improve their beneficial effects. These findings show that genetically engineering a candidate bacterium (e.g., S. thermophilus CRL 807) with intrinsic immunomodulatory properties by introducing a gene expressing an antioxidant enzyme enhances its anti-inflammatory activities.  相似文献   
969.
Much effort has been expended to improve irrigation efficiency and drought tolerance of agronomic crops; however, a clear understanding of the physiological mechanisms that interact to decrease source strength and drive yield loss has not been attained. To elucidate the underlying mechanisms contributing to inhibition of net carbon assimilation under drought stress, three cultivars of Gossypium hirsutum were grown in the field under contrasting irrigation regimes during the 2012 and 2013 growing season near Camilla, Georgia, USA. Physiological measurements were conducted on three sample dates during each growing season (providing a broad range of plant water status) and included, predawn and midday leaf water potential (ΨPD and ΨMD), gross and net photosynthesis, dark respiration, photorespiration, and chlorophyll a fluorescence. End-of-season lint yield was also determined. ΨPD ranged from −0.31 to −0.95 MPa, and ΨMD ranged from −1.02 to −2.67 MPa, depending upon irrigation regime and sample date. G. hirsutum responded to water deficit by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis, thereby limiting PN and decreasing lint yield (lint yield declines observed during the 2012 growing season only). Conversely, even extreme water deficit, causing a 54% decline in PN, did not negatively affect actual quantum yield, maximum quantum yield, or photosynthetic electron transport. It is concluded that PN is primarily limited in drought-stressed G. hirsutum by decreased stomatal conductance, along with increases in respiratory and photorespiratory carbon losses, not inhibition or down-regulation of electron transport through photosystem II. It is further concluded that ΨPD is a reliable indicator of drought stress and the need for irrigation in field-grown cotton.  相似文献   
970.
Ecology of bees (Hymenoptera, Apiformes) is entirely constrained by the centralized exchange between the nest and its environment. Herein, we investigate the ecological meaning of the flight activity of honeybees (Apis mellifera L.) at the entrance of the nest, and assessed whether this simple metric can be used as a proxy to infer on the colony state (population size and foraging activity). Theory predicts that flight activity of a colony should increase (1) with population size (density-dependence hypothesis), (2) with floral resource availability (optimal foraging hypothesis), and (3) with the flight activity during previous hours or days, due to a temporal autocorrelation (behavioural inertia hypothesis). We built and compared series of explanatory models for the flight activity measured at the entrance of hives, and its two visible components, namely bees with and without pollen loads. Data were collected on 26 honeybee colonies, both before and after a translocation into a new environment with controlled floral resource availability in order to distinguish among the respective contributions of explanatory factors. Current flight activity was consistently and positively influenced by previous flight activity as well as by the current resource availability. To our knowledge, this represents the first characterization of behavioural inertia in the context of a collective behaviour. Population size only influenced flight activity of bees without pollen loads. We discuss the limits of using simple counts of flying bees at the hive entrance to infer the colony state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号