首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   282篇
  免费   36篇
  国内免费   1篇
  2022年   4篇
  2020年   3篇
  2018年   3篇
  2017年   4篇
  2015年   9篇
  2014年   13篇
  2013年   12篇
  2012年   22篇
  2011年   20篇
  2010年   11篇
  2009年   17篇
  2008年   15篇
  2007年   9篇
  2006年   15篇
  2005年   4篇
  2004年   15篇
  2003年   4篇
  2002年   9篇
  2001年   9篇
  2000年   5篇
  1999年   6篇
  1998年   2篇
  1997年   3篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1990年   2篇
  1989年   2篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1982年   5篇
  1981年   3篇
  1980年   5篇
  1979年   5篇
  1978年   2篇
  1977年   3篇
  1976年   3篇
  1975年   5篇
  1974年   3篇
  1973年   4篇
  1972年   2篇
  1971年   3篇
  1970年   3篇
  1969年   3篇
  1968年   4篇
  1967年   3篇
  1966年   7篇
  1944年   3篇
排序方式: 共有319条查询结果,搜索用时 125 毫秒
71.
Tight junctions as targets of infectious agents   总被引:1,自引:0,他引:1  
The epithelial barrier is a critical border that segregates luminal material from entering tissues. Essential components of this epithelial fence are physical intercellular structures termed tight junctions. These junctions use a variety of transmembrane proteins coupled with cytoplasmic adaptors, and the actin cytoskeleton, to attach adjacent cells together thereby forming intercellular seals. Breaching of this barrier has profound effects on human health and disease, as barrier deficiencies have been linked with the onset of inflammation, diarrhea generation and pathogenic effects. Although tight junctions efficiently restrict most microbes from penetrating into deeper tissues and contain the microbiota, some pathogens have developed specific strategies to alter or disrupt these structures as part of their pathogenesis, resulting in either pathogen penetration, or other consequences such as diarrhea. Understanding the strategies that microorganisms use to commandeer the functions of tight junctions is an active area of research in microbial pathogenesis. In this review we highlight and overview the tactics bacteria and viruses use to alter tight junctions during disease. Additionally, these studies have identified novel tight junction protein functions by using pathogens and their virulence factors as tools to study the cell biology of junctional structures.  相似文献   
72.

Background-  

The innate immune system plays an important role in the recognition and induction of protective responses against infectious pathogens, whilst there is increasing evidence for a role in mediating chronic inflammatory diseases at older age. Despite indications that environmental conditions can influence the senescence process of the adaptive immune system, it is not known whether the same holds true for the innate immune system. Therefore we studied whether age-related innate immune responses are similar or differ between populations living under very diverse environmental conditions.  相似文献   
73.
The battle between phytopathogenic bacteria and their plant hosts has revealed a diverse suite of strategies and mechanisms employed by the pathogen or the host to gain the higher ground. Pathogens continually evolve tactics to acquire host resources and dampen host defences. Hosts must evolve surveillance and defence systems that are sensitive enough to rapidly respond to a diverse range of pathogens, while reducing costly and damaging inappropriate misexpression. The primary virulence mechanism employed by many bacteria is the type III secretion system, which secretes and translocates effector proteins directly into the cells of their plant hosts. Effectors have diverse enzymatic functions and can target specific components of plant systems. While these effectors should favour bacterial fitness, the host may be able to thwart infection by recognizing the activity or presence of these foreign molecules and initiating retaliatory immune measures. We review the diverse host cellular systems exploited by bacterial effectors, with particular focus on plant proteins directly targeted by effectors. Effector–host interactions reveal different stages of the battle between pathogen and host, as well as the diverse molecular strategies employed by bacterial pathogens to hijack eukaryotic cellular systems.  相似文献   
74.
75.
Understanding the mechanisms that microbes exploit to invade host cells and cause disease is crucial if we are to eliminate their threat. Although pathogens use a variety of microbial factors to trigger entry into non-phagocytic cells, their targeting of the host cell process of endocytosis has emerged as a common theme. To accomplish this, microbes often rewire the normal course of particle internalization, frequently usurping theoretical maximal sizes to permit entry and reconfiguring molecular components that were once thought to be required for vesicle formation. Here, we discuss recent advances in our understanding of how toxins, viruses, bacteria, and fungi manipulate the host cell endocytic machinery to generate diseases. Additionally, we will reveal the advantages of using these organisms to expand our general knowledge of endocytic mechanisms in eukaryotic cells.  相似文献   
76.

Background

Although both smoking and respiratory complaints are very common, tools to improve diagnostic accuracy are scarce in primary care. This study aimed to reveal what inflammatory patterns prevail in clinically established diagnosis groups, and what factors are associated with eosinophilia.

Method

Induced sputum and blood plasma of 59 primary care patients with COPD (n = 17), asthma (n = 11), chronic bronchitis (CB, n = 14) and smokers with no respiratory complaints ('healthy smokers', n = 17) were collected, as well as lung function, smoking history and clinical work-up. Patterns of inflammatory markers per clinical diagnosis and factors associated with eosinophilia were analyzed by multiple regression analyses, the differences expressed in odds ratios (OR) with 95% confidence intervals.

Results

Multivariately, COPD was significantly associated with raised plasma-LBP (OR 1.2 [1.04–1.37]) and sTNF-R55 in sputum (OR 1.01 [1.001–1.01]), while HS expressed significantly lowered plasma-LBP (OR 0.8 [0.72–0.95]). Asthma was characterized by higher sputum eosinophilic counts (OR 1.3 [1.05–1.54]), while CB showed a significantly higher proportion of sputum lymphocytic counts (OR 1.5 [1.12–1.9]). Sputum eosinophilia was significantly associated with reversibility after adjusting for smoking, lung function, age, gender and allergy.

Conclusion

Patterns of inflammatory markers in a panel of blood plasma and sputum cells and mediators were discernable in clinical diagnosis groups of respiratory disease. COPD and so-called healthy smokers showed consistent opposite associations with plasma LBP, while chronic bronchitics showed relatively predominant lymphocytic inflammation compared to other diagnosis groups. Only sputum eosinophilia remained significantly associated with reversibility across the spectrum of respiratory disease in smokers with airway complaints.  相似文献   
77.
There is a need for efficient modeling strategies which quickly lead to reliable mathematical models that can be applied for design and optimization of (bio)-chemical processes. The serial gray box modeling strategy is potentially very efficient because no detailed knowledge is needed to construct the white box part of the model and because covenient black box modeling techniques like neural networks can be used for the black box part of the model. This paper shows for a typical biochemical conversion how the serial gray box modeling strategy can be applied efficiently to obtain a model with good frequency extrapolation properties. Models with good frequency extrapolation properties can be applied under dynamic conditions that were not present during the identification experiments. For a given application domain of a model, this property can be used to considerably reduce the number of identification experiments. The serial gray box modeling strategy is demonstrated to be successful for the modeling of the enzymatic conversion of penicillin G In the concentration range of 10-100 mM and temperature range of 298-335 K. Frequency extrapolation is shown by using only constant temperatures in the (batch) identification experiments, while the model can be used reliable with varying temperatures during the (batch) validation experiments. No reliable frequency extrapolation properties could be obtained for a black box model, and for a more knowledge-driven white box model reliable frequency extrapolation properties could only be obtained by incorporating more knowledge in the model. Copyright 1999 John Wiley & Sons, Inc.  相似文献   
78.
Rohmer L  Guttman DS  Dangl JL 《Genetics》2004,167(3):1341-1360
Many gram-negative pathogenic bacteria directly translocate effector proteins into eukaryotic host cells via type III delivery systems. Type III effector proteins are determinants of virulence on susceptible plant hosts; they are also the proteins that trigger specific disease resistance in resistant plant hosts. Evolution of type III effectors is dominated by competing forces: the likely requirement for conservation of virulence function, the avoidance of host defenses, and possible adaptation to new hosts. To understand the evolutionary history of type III effectors in Pseudomonas syringae, we searched for homologs to 44 known or candidate P. syringae type III effectors and two effector chaperones. We examined 24 gene families for distribution among bacterial species, amino acid sequence diversity, and features indicative of horizontal transfer. We assessed the role of diversifying and purifying selection in the evolution of these gene families. While some P. syringae type III effectors were acquired recently, others have evolved predominantly by descent. The majority of codons in most of these genes were subjected to purifying selection, suggesting selective pressure to maintain presumed virulence function. However, members of 7 families had domains subject to diversifying selection.  相似文献   
79.
Tubulobulbar complexes are finger-like structures that form at the interface between maturing spermatids and Sertoli cells prior to sperm release and at the interface between two Sertoli cells near the base of the seminiferous epithelium. They originate in areas previously occupied by actin filament-associated intercellular adhesion plaques known as ectoplasmic specializations. Actin filaments also are associated with tubulobulbar complexes where they appear to form a network, rather than the tightly packed bundles found in ectoplasmic specializations. Cofilin, a calcium-independent actin-depolymerizing protein, previously has been identified in the testis, but has not been localized to specific structures in the seminiferous epithelium. To determine if cofilin is found in Sertoli cells and is concentrated at actin-rich structures, we reacted fixed frozen sections of rat testis, fixed fragmented tissue, and blots of seminiferous epithelium with pan-specific and non-muscle cofilin antibodies. In addition, GeneChip microarrays (Affymetrix, Santa Clara, CA) were utilized to determine the abundance of mRNA for all cofilin isoforms in Sertoli cells. Using the monoclonal pan-specific cofilin antibody, we found specific labeling exclusively at tubulobulbar complexes and not at ectoplasmic specializations. On one-dimensional (1D) Western blots this antibody reacted monospecifically with one band, and on 2D blots reacted with two dots, which we interpret as phosphorylated and nonphosphorylated forms of a single cofilin isotype. Messenger RNA for non-muscle cofilin in Sertoli cells is about 8.5-fold higher than for muscle-type cofilin. To confirm that the non-muscle isoform of cofilin is present at tubulobulbar complexes, we used antibodies specific to non-muscle cofilin for immunofluorescent localization. As with the pan-specific antibody, we found that the non-muscle cofilin antibody exclusively labeled tubulobulbar complexes. Results presented here indicate that non-muscle cofilin is concentrated at tubulobulbar complexes. Our results also indicate that cofilin is not concentrated at ectoplasmic specializations.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号