首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200篇
  免费   22篇
  2019年   2篇
  2017年   4篇
  2015年   4篇
  2014年   5篇
  2013年   6篇
  2012年   6篇
  2011年   6篇
  2010年   5篇
  2009年   3篇
  2008年   8篇
  2007年   11篇
  2006年   4篇
  2005年   6篇
  2004年   3篇
  2003年   5篇
  2002年   4篇
  2001年   5篇
  2000年   4篇
  1998年   2篇
  1997年   2篇
  1996年   4篇
  1994年   1篇
  1993年   3篇
  1992年   4篇
  1991年   9篇
  1990年   3篇
  1989年   2篇
  1985年   4篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   6篇
  1977年   4篇
  1976年   6篇
  1975年   6篇
  1974年   6篇
  1973年   5篇
  1972年   8篇
  1971年   5篇
  1970年   4篇
  1969年   6篇
  1968年   4篇
  1967年   6篇
  1966年   7篇
  1965年   3篇
  1947年   1篇
  1946年   1篇
排序方式: 共有222条查询结果,搜索用时 62 毫秒
41.
Production of beta-lactamases, and of the plasmid-encoded TEM- and SHV-type enzymes in particular, is the most common mechanism of resistance against beta-lactam antibiotics in Gram-negative bacteria. The two ubiquitous types of enzyme have a large spectrum of activity and preferentially hydrolyse the penicillins as well as some first- and second-generation cephalosporins. Recently, point mutations in the corresponding genes have been observed, apparently selected for, in the clinical setting, by originally 'beta-lactamase-stable' third-generation cephalosporins or by monobactams, which fall into the substrate range of the mutant or 'extended-spectrum' beta-lactamases. The point mutations are clustered in three areas, each adjacent to one of the seven evolutionarily conserved boxes described by Joris et al. (1988). The substituted amino acids at positions 102 (adjacent to the alpha-3 helix), 162 (adjacent to the alpha-7 helix) and 235, 236 and 237 (on the beta-3 strand) are located in close proximity to the active-site cavity and are thought to open up novel enzyme-substrate interactions, involving, in particular, the oxyimino moieties of the newer beta-lactam compounds.  相似文献   
42.
43.
44.
Expansion of astrocyte populations in the central nervous system is characteristic of evolutionarily more complex organisms. However, regulation of mammalian astrocyte precursor proliferation during development remains poorly understood. Here, we used Aldh1L1-GFP to identify two morphologically distinct types of proliferative astrocyte precursors: radial glia (RG) in the ventricular zone and a second cell type we call an 'intermediate astrocyte precursor' (IAP) located in the mantle region of the spinal cord. Astrogenic RG and IAP cells proliferated in a progressive ventral-to-dorsal fashion in a tight window from embryonic day 13.5 until postnatal day 3, which correlated precisely with the pattern of active ERK signalling. Conditional loss of BRAF function using BLBP-cre resulted in a 20% decrease in astrocyte production, whereas expression of activated BRAFV600E resulted in astrocyte hyperproliferation. Interestingly, BRAFV600E mitogenic effects in astrocytes were restricted, in part, by the function of p16INK4A-p19(ARF), which limited the temporal epoch for proliferation. Together, these findings suggest that astrocyte precursor proliferation involves distinct RG and IAP cells; is subjected to temporal and spatial control; and depends in part on BRAF signalling at early stages of mammalian spinal cord development.  相似文献   
45.
Glycopeptides and beta-lactams are the major antibiotics available for the treatment of infections due to Gram-positive bacteria. Emergence of cross-resistance to these drugs by a single mechanism has been considered as unlikely because they inhibit peptidoglycan polymerization by different mechanisms. The glycopeptides bind to the peptidyl-D-Ala(4)-D-Ala(5) extremity of peptidoglycan precursors and block by steric hindrance the essential glycosyltransferase and D,D-transpeptidase activities of the penicillin-binding proteins (PBPs). The beta-lactams are structural analogues of D-Ala(4)-D-Ala(5) and act as suicide substrates of the D,D-transpeptidase module of the PBPs. Here we have shown that bypass of the PBPs by the recently described beta-lactam-insensitive L,D-transpeptidase from Enterococcus faecium (Ldt(fm)) can lead to high level resistance to glycopeptides and beta-lactams. Cross-resistance was selected by glycopeptides alone or serially by beta-lactams and glycopeptides. In the corresponding mutants, UDP-MurNAc-pentapeptide was extensively converted to UDP-MurNAc-tetrapeptide following hydrolysis of D-Ala(5), thereby providing the substrate of Ldt(fm). Complete elimination of D-Ala(5), a residue essential for glycopeptide binding, was possible because Ldt(fm) uses the energy of the L-Lys(3)-D-Ala(4) peptide bond for cross-link formation in contrast to PBPs, which use the energy of the D-Ala(4)-D-Ala(5) bond. This novel mechanism of glycopeptide resistance was unrelated to the previously identified replacement of D-Ala(5) by D-Ser or D-lactate.  相似文献   
46.
Individuals with the inherited cancer predisposition syndrome neurofibromatosis 2 (NF2) develop several central nervous system (CNS) malignancies, including glial cell neoplasms (ependymomas). Recent studies have suggested that the NF2 protein, merlin (or schwannomin), may regulate receptor tyrosine kinase signaling, intracellular mitogenic growth control pathways, or adherens junction organization in non-nervous-system cell types. For this report, we used glial fibrillary acidic protein conditional knockout mice and derivative glia to determine how merlin regulates CNS glial cell proliferation. We show that the loss of merlin in glial cells results in increased proliferation in vitro and in vivo. Merlin regulation of glial cell growth reflects deregulated Src activity, such that pharmacologic or genetic inhibition of Src activation reduces Nf2−/− glial cell growth to wild-type levels. We further show that Src regulates Nf2−/− glial cell growth by sequentially regulating FAK and paxillin phosphorylation/activity. Next, we demonstrate that Src activation results from merlin regulation of ErbB2 activation and that genetic or pharmacologic ErbB2 inhibition reduces Nf2−/− glial cell Src/Src effector activation and proliferation to wild-type levels. Lastly, we show that merlin competes with Src for direct binding to ErbB2 and present a novel molecular mechanism for merlin regulation of ErbB2-dependent Src signaling and growth control.Neurofibromatosis type 2 (NF2) is an autosomal dominant inherited cancer syndrome in which affected individuals develop nervous system tumors, including peripheral nerve tumors (schwannomas), leptomeningeal tumors (meningiomas), and glial fibrillary acidic protein (GFAP)-immunoreactive glial cell tumors (spinal ependymomas). NF2 results from a germ line mutation in the NF2 tumor suppressor gene, located on chromosome 22q (46, 60). Tumors in this disorder arise following somatic inactivation of the one remaining wild-type (WT) NF2 allele in specific cell types. In this regard, NF2-associated schwannomas, meningiomas, and ependymomas all exhibit biallelic NF2 gene inactivation (33, 47, 61). In addition, NF2 gene inactivation is also observed in 50 to 78% of sporadic schwannomas, 32 to 84% of sporadic meningiomas, and 37% of sporadic ependymomas (21, 29), suggesting that this gene is also a key growth regulator in nonhereditary nervous system cancers.The NF2 gene was identified in 1993 and found to code for a 595-amino-acid protein, termed merlin or schwannomin (46, 60). Analysis of the predicted protein sequence revealed striking sequence similarity between merlin and a family of protein 4.1 family members that link the actin cytoskeleton to cell surface glycoproteins (55). In particular, merlin most closely resembles the ezrin/radixin/moesin (ERM) subfamily and has been shown to bind actin as well as to associate with several cell surface glycoproteins, including CD44 and β1-integrin (5, 32, 48). However, unlike the ERM proteins, merlin is unique in its capacity to function as a nervous system tumor suppressor gene.In order to identify the key signaling pathways regulated by the merlin tumor suppressor protein, previous studies have focused on merlin growth regulation in fibroblasts, primary Schwann cell and human schwannoma cell cultures, meningioma and schwannoma tumor cell lines, and other non-central nervous system (non-CNS) cell types. These investigations have resulted in the identification of a large number of nonintersecting growth control pathways regulated by merlin in different cell types. In this regard, merlin has been implicated in epidermal growth factor receptor (EGFR) (9), β1-integrin (15), and CD44 (1, 35, 48) function as well as in Ras (25, 59), Rac1 (34, 52), phosphatidylinositol 3-kinase (44), mitogen-activated protein kinase (MAPK) (7, 30), and STAT (51) intracellular signaling. While each of these pathways is involved in growth control in the brain, it is not known which of these intracellular signaling pathways are deregulated in NF2-deficient CNS cell types.To gain insights into the role of the NF2 gene in glial cell growth control relevant to the development of targeted therapies for NF2-associated glial cell malignancies, we studied the consequence of merlin loss on the growth of primary brain glial cells (astrocytes) in vitro and in vivo, using Nf2 conditional knockout genetically engineered mice (GEM). We demonstrate for the first time that merlin regulates brain glial cell growth by controlling the phosphorylation/activity of Src and its downstream effectors, FAK and paxillin. Furthermore, we show that merlin regulation of Src phosphorylation/activation is modulated by ErbB2 phosphorylation/activation and ErbB2-Src binding. Finally, we show that merlin competitively inhibits Src binding to ErbB2 and, in this manner, prevents ErbB2-mediated Src phosphorylation and downstream mitogenic signaling. Based on these findings, we propose a novel mechanism for merlin growth regulation in CNS glia.  相似文献   
47.
Corynebacterium jeikeium is an emerging nosocomial pathogen responsible for vascular catheters infections, prosthetic endocarditis and septicemia. The treatment of C. jeikeium infections is complicated by the multiresistance of clinical isolates to antibiotics, in particular to β-lactams, the most broadly used class of antibiotics. To gain insight into the mechanism of β-lactam resistance, we have determined the structure of the peptidoglycan and shown that C. jeikeium has the dual capacity to catalyse formation of cross-links generated by transpeptidases of the d , d and l , d specificities. Two ampicillin-insensitive cross-linking enzymes were identified, LdtCjk1, a member of the active site cysteine l , d -transpeptidase family, and Pbp2c, a low-affinity class B penicillin-binding protein (PBP). In the absence of β-lactam, the PBPs and the l , d -transpeptidase contributed to the formation of 62% and 38% of the cross-links respectively. Although LdtCjk1 and Pbp2C were not inhibited by ampicillin, the participation of the l , d -transpeptidase to peptidoglycan cross-linking decreased in the presence of the drug. The specificity of LdtCjk1 for acyl donors containing a tetrapeptide stem accounts for this effect of ampicillin since the essential substrate of LdtCjk1 was produced by an ampicillin-sensitive d , d -carboxypeptidase (Pbp4Cjk). Acquisition and mutational alterations of pbp2C accounted for high-level β-lactam resistance in C. jeikeium .  相似文献   
48.
Vascular endothelial growth factor (VEGF) plays a critical role in normal development as well as retinal vasculature disease. During retinal vascularization, VEGF is most strongly expressed by not yet vascularized retinal astrocytes, but also by retinal astrocytes within the developing vascular plexus, suggesting a role for retinal astrocyte-derived VEGF in angiogenesis and vessel network maturation. To test the role of astrocyte-derived VEGF, we used Cre-lox technology in mice to delete VEGF in retinal astrocytes during development. Surprisingly, this only had a minor impact on retinal vasculature development, with only small decreases in plexus spreading, endothelial cell proliferation and survival observed. In contrast, astrocyte VEGF deletion had more pronounced effects on hyperoxia-induced vaso-obliteration and led to the regression of smooth muscle cell-coated radial arteries and veins, which are usually resistant to the vessel-collapsing effects of hyperoxia. These results suggest that VEGF production from retinal astrocytes is relatively dispensable during development, but performs vessel stabilizing functions in the retinal vasculature and might be relevant for retinopathy of prematurity in humans.  相似文献   
49.
Large-scale gene expression measurements with oligonucleotide microarrays have contributed tremendously to biological research. However, to distinguish between relevant expression changes and falsely identified positives, the source and magnitude of errors must be understood. Here, we report a source of biological variability in microarray experiments with stably transfected cell lines. Mouse embryonic fibroblast (MEF/3T3) and rat schwannoma (RT4) cell lines were generated to provide regulatable schwannomin expression. The expression levels of 29 samples from five different mouse embryonic fibroblast clonal cell lines and 18 samples from 3 RT4 cell lines were monitored with oligonucleotide microarrays. Using hierarchical clustering, we determined that the changes in gene expression induced by schwannomin overexpression were subtle when compared with those detected as a consequence of clonal selection during generation of the cell lines. The hierarchical clustering implies that significant alterations of gene expression were introduced during the transfection and selection processes. A total of 28 genes were identified by Kruskal-Wallis rank test that showed significant variation between clonal lines. Most of them were related to cytoskeletal function and signaling pathways. Based on these analyses, we recommend that replications of experiments with several selected cell lines are necessary to assess biological effects of induced gene expression.  相似文献   
50.
The d,d-transpeptidase activity of high molecular weight penicillin-binding proteins (PBPs) is essential to maintain cell wall integrity as it catalyzes the final cross-linking step of bacterial peptidoglycan synthesis. We investigated a novel beta-lactam resistance mechanism involving by-pass of the essential PBPs by l,d-transpeptidation in Enterococcus faecium. Determination of the peptidoglycan structure by reverse phase high performance liquid chromatography coupled to mass spectrometry revealed that stepwise selection for ampicillin resistance led to the gradual replacement of the usual cross-links generated by the PBPs (d-Ala(4) --> d-Asx-Lys(3)) by cross-links resulting from l,d-transpeptidation (l-Lys(3) --> d-Asx-Lys(3)). This was associated with no modification of the level of production of the PBPs or of their affinity for beta-lactams, indicating that altered PBP activity was not required for ampicillin resistance. A beta-lactam-insensitive l,d-transpeptidase was detected in membrane preparations of the parental susceptible strain. Acquisition of resistance was not because of variation of this activity. Instead, selection led to production of a beta-lactam-insensitive d,d-carboxypeptidase that cleaved the C-terminal d-Ala residue of pentapeptide stems in vitro and caused massive accumulation of cytoplasmic precursors containing a tetrapeptide stem in vivo. The parallel dramatic increase in the proportion of l-Lys(3) --> d-Asx-Lys(3) cross-links showed that the enzyme was activating the resistance pathway by generating the substrate for the l,d-transpeptidase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号