首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   5篇
  81篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   8篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2006年   3篇
  2002年   1篇
  2001年   1篇
  1999年   4篇
  1998年   1篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   4篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1977年   4篇
  1976年   2篇
  1975年   3篇
  1972年   3篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
排序方式: 共有81条查询结果,搜索用时 0 毫秒
51.
Summary Diffusion of inorganic mercury (Hg2+) through planar lipid bilayer membranes was studied as a function of chloride concentration and pH. Membranes were made from egg lecithin plus cholesterol in tetradecane. Tracer (203Hg) flux and conductance measurements were used to estimate the permeabilities to ionic and nonionic forms of Hg. At pH 7.0 and [Cl] ranging from 10–1000mm, only the dichloride complex of mercury (HgCl2) crosses the membrane at a significant rate. However, several other Hg complexes (HgOHCl, HgCl 3 and HgCl 4 2– ) contribute to diffusion through the aqueous unstirred layer adjacent to the membrane. The relation between the total mercury flux (J Hg), Hg concentrations, and permeabilities is: 1/J Hg=1/P ul[Hg t ]+1/P m [HgCl2], where [Hg t ] is the total concentration of all forms of Hg,P ul is the unstirred layer permeability, andP m is the membrane permeability to HgCl2. By fitting this equation to the data we find thatP m =1.3×10–2 cm sec–1. At Cl concentrations ranging from 1–100mm, diffusion of Hg t through the unstirred layer is rate limiting. At Cl concentrations ranging from 500–1000mm, the membrane permeability to HgCl2 becomes rate limiting because HgCl2 comprises only about 1% of the total Hg. Under all conditions, chemical reactions among Hg2+, Cl and/or OH near the membrane surface play an important role in the transport process. Other important metals, e.g., Zn2+, Cd2+, Ag+ and CH3Hg+, form neutral chloride complexes under physiological conditions. Thus, it is likely that chloride can facilitate the diffusion of a variety of metals through lipid bilayer and biological membranes.  相似文献   
52.
53.
Summary The current-voltage (I–V) relationships for internally perfused and nonperfused cells ofHalicystis parvula were determined. In both types of cells theI–V curve shows a conspicuous region of negative slope, beginning at vacuole potentials around –30 mV and continuing to values of +20 to +40mV. The negative slope in perfused cells is abolished by the metabolic inhibitors, darkness and low temperature. In order to determine the origin of this negative slope, we measured the voltage sensitivity of the unidirectional fluxes of Cl, Na+ and K+ in perfused cells. The results show that the Cl influx, which is mediated primarily by a Cl pump, increases as the vacuole potential is clamped at increasingly morenegative values up to –50 mV, while the other fluxes measured changed in the directions predicted by the change in electrical driving force. The voltage sensitivity of the Cl pump quantitatively accounts for the negative slope of theI–V curve. Also, we observed a large transient outward current of 10–20-sec duration following an abrupt depolarization by voltage clamping. This transient current was reduced or abolished by low temperature, which suggests that it may be due to the voltage-sensitive Cl pump. Finally, we found an inverse relationship between the transprotoplasm resistance (R m ) and thePD under standard conditions, which suggests that the activity of the electrogenic Cl pump lowerR m , i.e., it is a conductive pump.  相似文献   
54.
55.
56.
A better understanding of soil microbial ecology is critical to gaining an understanding of terrestrial carbon (C) cycle–climate change feedbacks. However, current knowledge limits our ability to predict microbial community dynamics in the face of multiple global change drivers and their implications for respiratory loss of soil carbon. Whether microorganisms will acclimate to climate warming and ameliorate predicted respiratory C losses is still debated. It also remains unclear how precipitation, another important climate change driver, will interact with warming to affect microorganisms and their regulation of respiratory C loss. We explore the dynamics of microorganisms and their contributions to respiratory C loss using a 4-year (2006–2009) field experiment in a semi-arid grassland with increased temperature and precipitation in a full factorial design. We found no response of mass-specific (per unit microbial biomass C) heterotrophic respiration to warming, suggesting that respiratory C loss is directly from microbial growth rather than total physiological respiratory responses to warming. Increased precipitation did stimulate both microbial biomass and mass-specific respiration, both of which make large contributions to respiratory loss of soil carbon. Taken together, these results suggest that, in semi-arid grasslands, soil moisture and related substrate availability may inhibit physiological respiratory responses to warming (where soil moisture was significantly lower), while they are not inhibited under elevated precipitation. Although we found no total physiological response to warming, warming increased bacterial C utilization (measured by BIOLOG EcoPlates) and increased bacterial oxidation of carbohydrates and phenols. Non-metric multidimensional scaling analysis as well as ANOVA testing showed that warming or increased precipitation did not change microbial community structure, which could suggest that microbial communities in semi-arid grasslands are already adapted to fluctuating climatic conditions. In summary, our results support the idea that microbial responses to climate change are multifaceted and, even with no large shifts in community structure, microbial mediation of soil carbon loss could still occur under future climate scenarios.  相似文献   
57.
Diffusion of thiocyanate (SCN?) and thiocyanic acid (HSCN) (pK=?1.8) through lipid bilayer membranes was studied as a function of pH. Membranes were made of egg phosphatidylcholine or phosphatidylcholine plus cholesterol (1:1 mol ratio) dissolved in decane or tetradecane. Tracer fluxes and electrical conductances were used to estimate the permeabilities to HSCN and SCN?. Over the pH range 1.0 to 3.3 only HSCN crosses the membrane at a significant rate. The relation between the total SCN flux (JA), concentrations and permeabilities is: 1/JA=1/Pul([A?]+[HA])+1/PHAm[HA], where [A?] and [HA] are the concentrations of SCN? and HSCN, Pul is permeability coefficient of the unstirred layer, and PHAm is the membrane permeability to HSCN. By fitting this equation to the data we find that PHAm = 2.6 cm · s?1 and Pul = 9.0 · 10?4 cm · s?1. Conductance measurements indicate that PA?m is 5 · 10?9 cm · s?1. Addition of cholesterol to phosphatidylcholine (1:1 mol ratio) reduces PHAm by a factor of 0.4 but has no effect on PA?m. SCN? is potent inhibitor of acid secretion in gastric mucosa, but the mechanism of SCN? action is unknown. Our results suggest that SCN? acts by combining with H+ in the mucosal unstirred layer (secretory pits) and diffusing back into the cells as HSCN, thus dissipating the proton gradient across the secretory membrane. A similar mechanism of action is proposed for some other inhibitors of gastric acid secretion, e.g. nitrite (NO2?), cyanate (CNO?) and NH4+.  相似文献   
58.
Wildfire in California annual grasslands is an important ecological disturbance and ecosystem control. Regional and global climate changes that affect aboveground biomass will alter fire-related nutrient loading and promote increased frequency and severity of fire in these systems. This can have long-term impacts on soil microbial dynamics and nutrient cycling, particularly in N-limited systems such as annual grasslands. We examined the effects of a low-severity fire on microbial biomass and specific microbial lipid biomarkers over 3?years following a fire at the Jasper Ridge Global Change Experiment. We also examined the impact of fire on the abundance of ammonia-oxidizing bacteria (AOB), specifically Nitrosospira Cluster 3a ammonia-oxidizers, and nitrification rates 9?months post-fire. Finally, we examined the interactive effects of fire and three other global change factors (N-deposition, precipitation and CO2) on plant biomass and soil microbial communities for three growing seasons after fire. Our results indicate that a low-severity fire is associated with earlier season primary productivity and higher soil-NH4 + concentrations in the first growing season following fire. Belowground productivity and total microbial biomass were not influenced by fire. Diagnostic microbial lipid biomarkers, including those for Gram-positive bacteria and Gram-negative bacteria, were reduced by fire 9- and 21-months post-fire, respectively. All effects of fire were indiscernible by 33-months post-fire, suggesting that above and belowground responses to fire do not persist in the long-term and that these grassland communities are resilient to fire disturbance. While N-deposition increased soil NH4 +, and thus available NH3, AOB abundance, nitrification rates and Cluster 3a AOB, similar increases in NH3 in the fire plots did not affect AOB or nitrification. We hypothesize that this difference in response to N-addition involves a mediation of P-limitation as a result of fire, possibly enhanced by increased plant competition and arbuscular mycorrhizal fungi–plant associations after fire.  相似文献   
59.
Summary Transport of protons and halide ions through planar lipid bilayers made from egg lecithin and a long-chain secondary amine (n-lauryl [trialkylmethyl] amine) inn-decane was studied. Net proton fluxes were measured with a pH electrode, and halide fluxes were measured with82Br and36Cl. In membranes containing the secondary amine, a large net proton flux was produced either by a Br gradient with symmetrical pH or by a pH gradient with symmetrical Br, but not by a pH gradient in Br-free solutions. This H+ flux was electrically silent (nonconductive), and the H+ permeability coefficient was >10–3 cm sec–1 in 0.1m NaBr. In Br-free solutions, H+ selectivity was observed electrically by measuring conductances and zero-current potentials generated by H+ activity gradients. The permeability coefficient for this ionic (conductive) H+ flux was about 10–5 cm sec–1, several orders of magnitude smaller than the H+ permeability of the electroneutral pathway. Large electroneutral Br exchange fluxes occurred under symmetrical conditions, and the permeability coefficient for Br exchange was about 10–3 cm sec–1 at pH 5. The one-way Br flux was inhibited by substituting SO 4 = for Br on the trans side of the membrane. These results support a titratable carrier model in which the secondary amine exists in three forms (C, CH+ and CHBr). Protons can cross the membrane either as CHBr (nonconductive) or as CH+ (conductive), whereas Br crosses the membrane primarily as CHBr (nonconductive). In addition to these three types of transport, there is also a pH-dependent conductive flux of Br which has a permeability coefficient of about 10–7 cm sec–1 at pH 5. Experiments with lipid monolayers suggest that the pH dependence of this conductive flux is caused by a change in surface potential of about +100 mV between pH 9.5 and 5.0.  相似文献   
60.
This paper describes a species specific satellite DNA family (pSsP216) of Drosophila subsilvestris, a palearctic species of the D. obscura group. The pSsP216 family consists of tandemly arranged 216 bp repetitive units that are predominantly localized on B chromosomes. These chromosomes appear in variable numbers in the karyotype of this species. Some pSsP216 repeats can also be detected in the centromeric heterochromatin of the acrocentric A chromosomes. Two strains, one with and the other without B chromosomes, were investigated for sequence variability and for the location of this satellite DNA on the chromosomes. Among 16 clones of the 216 bp basic repeat unit an overall similarity of about 93% and no strain specific differences were found, indicating that the B chromosomes may have derived from the A chromosomes (probably the dots) by spontaneous amplification of the pSsP216 satellite DNA family.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号