首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   25篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   6篇
  2015年   7篇
  2014年   8篇
  2013年   5篇
  2012年   9篇
  2011年   9篇
  2010年   7篇
  2009年   7篇
  2008年   9篇
  2007年   10篇
  2006年   6篇
  2005年   8篇
  2004年   9篇
  2003年   7篇
  2002年   8篇
  2001年   6篇
  2000年   13篇
  1999年   9篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1992年   5篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1981年   2篇
  1979年   1篇
  1977年   3篇
  1976年   1篇
  1969年   1篇
  1968年   1篇
  1964年   1篇
  1958年   1篇
排序方式: 共有191条查询结果,搜索用时 15 毫秒
171.
Cells organize diverse types of specialized adhesion sites upon attachment to extracellular matrix (ECM) components. One of the physiological roles of such cell-ECM interactions is to initiate and regulate adhesion-mediated signal transduction responses. The association of cells with fibronectin fibrils has been shown to regulate the JNK and p38 signaling pathways. We tested whether tensin, a cytoskeletal component localized to both focal contacts and fibronectin-associated fibrillar adhesions, can induce these signaling pathways. We found that tensin overexpression resulted in activation of both the c-Jun amino-terminal kinase (JNK) and p38 pathways. Tensin-mediated JNK activation was independent of the activities of the small GTP binding proteins Rac and Cdc42, but did depend on SEK, a kinase involved in the JNK pathway. We suggest that tensin may directly activate the JNK and p38 pathways, acting downstream or independent of the activities of the small GTP binding proteins Rac and Cdc42.  相似文献   
172.
Granulocyte colony-stimulating factor (G-CSF) plays a major role in the regulation of granulopoiesis. Treatment of cells with G-CSF has been shown to activate multiple signal transduction pathways. We show here that Erk5, a novel member of the MAPK family, and its specific upstream activator MEK5 were activated in response to incubation of cells with G-CSF. Different from other members of the MAPK family including Erk1/2, JNK, and p38, maximal activation of Erk5 by G-CSF required the C-terminal region of the G-CSF receptor. Genistein, a specific inhibitor of protein-tyrosine kinases, blocked G-CSF-induced Erk5 activation. In contrast, inhibition of protein kinase C activity increased G-CSF-mediated activation of Erk5 and MEK5, whereas stimulation of protein kinase C activity inhibited activation of the two kinases by G-CSF. The proliferation of BAF3 cells in response to G-CSF was inhibited by expression of a dominant-negative MEK5 but potentiated by expression of a constitutively active MEK5. Expression of the constitutively active MEK5 also increased the survival of BAF3 cells cultured in the absence of or in low concentrations of G-CSF. Together, these data implicate Erk5 as an important signaling component in the biological actions of G-CSF.  相似文献   
173.
174.
Rapamycin is an allosteric inhibitor of mammalian target of rapamycin, and inhibits tumor growth and angiogenesis. Recent studies suggested a possibility that rapamycin renormalizes aberrant tumor vasculature and improves tumor oxygenation. The longitudinal effects of rapamycin on angiogenesis and tumor oxygenation were evaluated in murine squamous cell carcinoma (SCCVII) by electron paramagnetic resonance imaging (EPRI) and magnetic resonance imaging (MRI) to identify an optimal time after rapamycin treatment for enhanced tumor radioresponse. Rapamycin treatment was initiated on SCCVII solid tumors 8 days after implantation (500–750 mm3) and measurements of tumor pO2 and blood volume were conducted from day 8 to 14 by EPRI/MRI. Microvessel density was evaluated over the same time period by immunohistochemical analysis. Tumor blood volume as measured by MRI significantly decreased 2 days after rapamycin treatment. Tumor pO2 levels modestly but significantly increased 2 days after rapamycin treatment; whereas, it decreased in non-treated control tumors. Furthermore, the fraction of hypoxic area (pixels with pO2<10 mm Hg) in the tumor region decreased 2 days after rapamycin treatments. Immunohistochemical analysis of tumor microvessel density and pericyte coverage revealed that microvessel density decreased 2 days after rapamycin treatment, but pericyte coverage did not change, similar to what was seen with anti-angiogenic agents such as sunitinib which cause vascular renormalization. Collectively, EPRI/MRI co-imaging can provide non-invasive evidence of rapamycin-induced vascular renormalization and resultant transient increase in tumor oxygenation. Improved oxygenation by rapamycin treatment provides a temporal window for anti-cancer therapies to realize enhanced response to radiotherapy.  相似文献   
175.
SET protein (I2PP2A) is an inhibitor of PP2A, which regulates the phosphorylated Akt (protein kinase B) levels. We assessed the effects of SET overexpression in HEK293T cells, both in the presence and the absence of mild oxidative stress induced by 50 μM tert-butyl hydroperoxide. Immunoblotting assays demonstrated that SET accumulated in HEK293T cells and increased the levels of phosphorylated Akt and PTEN; in addition, SET decreased glutathione antioxidant defense of cell and increased expression of genes encoding antioxidant defense proteins. Immunofluorescence analysis demonstrated that accumulated SET was equally distributed in cytoplasm and nucleus; however, in cells that had been exposed to oxidative stress, SET was found in large aggregates in the cytoplasm. SET accumulation in HEK293T cells correlated with inhibition of basal apoptosis as evidenced by a decrease in annexin V staining and activity of caspases; under mild oxidative stress, SET accumulation correlated with caspase-independent cell death, as evidenced by increased PI and annexin V/PI double staining. The results suggest that accumulated SET could act via Akt/PTEN either as cell survival signal or as oxidative stress sensor for cell death.  相似文献   
176.
Collagen degradation is essential for cell migration, proliferation, and differentiation. Two key turnover pathways have been described for collagen: intracellular cathepsin-mediated degradation and pericellular collagenase-mediated degradation. However, the functional relationship between these two pathways is unclear and even controversial. Here we show that intracellular and pericellular collagen turnover pathways have complementary roles in vivo. Individual deficits in intracellular collagen degradation (urokinase plasminogen activator receptor-associated protein/Endo180 ablation) or pericellular collagen degradation (membrane type 1-matrix metalloproteinase ablation) were compatible with development and survival. Their combined deficits, however, synergized to cause postnatal death by severely impairing bone formation. Interestingly, this was mechanistically linked to the proliferative failure and poor survival of cartilage- and bone-forming cells within their collagen-rich microenvironment. These findings have important implications for the use of pharmacological inhibitors of collagenase activity to prevent connective tissue destruction in a variety of diseases.  相似文献   
177.
178.
ARRDC3 is one of six known human α‐arrestins, and has been implicated in the downregulation of the β2‐adrenergic receptor (β2AR). ARRDC3 consists of a two‐lobed arrestin fold and a C‐terminal tail containing two PPYX motifs. In the current model for receptor downregulation by ARRDC3, the arrestin fold portion is thought to bind the receptor, while the PPXY motifs recruit ubiquitin ligases of the NEDD4 family. Here we report the crystal structures of the N‐terminal lobe of human ARRDC3 in two conformations, at 1.73 and 2.8 Å resolution, respectively. The structures reveal a large electropositive region that is capable of binding phosphate ions of crystallization. Residues within the basic patch were shown to be important for binding to β2AR, similar to the situation with β‐arrestins. This highlights potential parallels in receptor recognition between α‐ and β‐arrestins.  相似文献   
179.
We investigated the gene and protein expressions of V-type ATPase protein subunit C1 (ATP6V1C1) in cases of oral squamous cell carcinoma (OSCC) and contralateral normal mucosa in smokers, nonsmokers and former smokers. Subjects were separated into five groups of 15: group 1, smokers with OSCC; group 2, normal contralateral mucosa of OSCC patients; group 3, chronic smokers; group 4, former smokers who had stopped smoking 1 year earlier; group 5, individuals who had never smoked. Exfoliative cytology specimens from oral mucosa of smokers, former smokers and nonsmokers showed normal gene and protein expression. We found significantly greater gene expression in the OSCC group than in the nonsmoker groups. No difference in gene expression was observed between normal contralateral mucosa and nonsmoker groups, smoker and nonsmoker groups or former smoker and nonsmoker groups. We observed intense immunostaining for ATP6V1C1 protein in all cases of OSCC and weak or no staining in smoker, former smoker and nonsmoker groups. Significantly greater expression of ATP6V1C1 protein was observed in the OSCC group compared to the other groups, which supports the role of ATP6V1C1 in effecting changes associated with oral cancer. Analysis of the mucosae of chronic smokers, former smokers and the normal contralateral mucosa of patients with OSCC showed unaltered ATP6V1C1 gene and protein expression. Early stages of carcinogenesis, represented by altered epithelium of chronic smokers, had neither gene nor protein alterations as seen in OSCC. Therefore, we infer that the changes in ATP6V1C1 occur during later stages of carcinogenesis. Our preliminary study provides a basis for future studies of using ATP6V1C1 levels for detecting early stage OSCC.  相似文献   
180.
Autologous disc cell implantation, growth factors and gene therapy appear to be promising therapies for disc regeneration. Unfortunately, the replicative lifespan and growth kinetics of human nucleus pulposus (NP) cells related to host age are unclear. We investigated the potential relations among age, replicative lifespan and growth rate of NP cells, and determined the age range that is suitable for cell-based biological therapies for degenerative disc diseases. We used NP tissues classified by decade into five age groups: 30s, 40s, 50s, 60s and 70s. The mean cumulative population doubling level (PDL) and population doubling rate (PDR) of NP cells were assessed by decade. We also investigated correlations between cumulative PDL and age, and between PDR and age. The mean cumulative PDL and PDR decreased significantly in patients in their 60s. The mean cumulative PDL and PDR in the younger groups (30s, 40s and 50s) were significantly higher than those in the older groups (60s and 70s). There also were significant negative correlations between cumulative PDL and age, and between PDR and age. We found that the replicative lifespan and growth rate of human NP cells decreased with age. The replicative potential of NP cells decreased significantly in patients 60 years old and older. Young individuals less than 60 years old may be suitable candidates for NP cell-based biological therapies for treating degenerative disc diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号