首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4827篇
  免费   386篇
  2023年   31篇
  2022年   85篇
  2021年   140篇
  2020年   69篇
  2019年   107篇
  2018年   145篇
  2017年   140篇
  2016年   191篇
  2015年   276篇
  2014年   296篇
  2013年   338篇
  2012年   416篇
  2011年   425篇
  2010年   255篇
  2009年   192篇
  2008年   284篇
  2007年   293篇
  2006年   252篇
  2005年   208篇
  2004年   193篇
  2003年   175篇
  2002年   144篇
  2001年   54篇
  2000年   33篇
  1999年   45篇
  1998年   45篇
  1997年   27篇
  1996年   21篇
  1995年   16篇
  1994年   18篇
  1993年   15篇
  1992年   25篇
  1991年   24篇
  1990年   27篇
  1989年   17篇
  1988年   16篇
  1987年   11篇
  1986年   13篇
  1985年   20篇
  1984年   13篇
  1983年   12篇
  1982年   11篇
  1981年   14篇
  1980年   12篇
  1979年   6篇
  1978年   6篇
  1977年   9篇
  1974年   5篇
  1967年   6篇
  1966年   5篇
排序方式: 共有5213条查询结果,搜索用时 15 毫秒
91.
In South America, the order Atheriniformes includes the monophyletic genus Odontesthes with 20 species that inhabit freshwater, estuarine and coastal environments. Pejerrey Odontesthes argentinensis is widely distributed in coastal and estuarine areas of the Atlantic Ocean and is known to foray into estuaries of river systems, particularly in conditions of elevated salinity. However, to our knowledge, a landlocked self-sustaining population has never been recorded. In this study, we examined the pejerrey population of Salada de Pedro Luro Lake (south-east of Buenos Aires Province, Argentina) to clarify its taxonomic identity. An integrative taxonomic analysis based on traditional meristic, landmark-based morphometrics and genetic techniques suggests that the Salada de Pedro Luro pejerrey population represents a novel case of physiological and morphological adaptation of a marine pejerrey species to a landlocked environment and emphasises the environmental plasticity of this group of fishes.  相似文献   
92.
Phytopathogen infection alters primary metabolism status and plant development. The alternative oxidase (AOX) has been hypothesized to increase under pathogen attack preventing reductions, thus optimizing photosynthesis and growth. In this study, two genotypes of Medicago truncatula, one relatively resistant (Jemalong A17) and one susceptible (TN1.11), were infected with Fusarium oxysporum and Rhizoctonia solani. The in vivo foliar respiratory activities of the cytochrome oxidase pathway (COP) and the alternative oxidase pathway (AOP) were measured using the oxygen isotope fractionation. Gas exchange and photosynthesis-related parameters were measured and calculated together with antioxidant enzymes activities and organic acids contents. Our results show that the in vivo activity of AOX (valt) plays a role under fungal infection. When infected with R. solani, the increase of valt in A17 was concomitant to an increase in net assimilation, in mesophyll conductance, to an improvement in the maximum velocity of Rubisco carboxylation and to unchanged malate content. However, under F. oxysporum infection, the induced valt was accompanied by an enhancement in the antioxidant enzymes, superoxide dismutase (SOD; EC1.15.1.1), catalase (CAT; EC1.11.1.6) and guaiacol peroxidase (GPX; EC1.11.1.7), activities and to an unchanged tricarboxylic acid cycle intermediates. These results provide new insight into the role of the in vivo activity of AOX in coordinating primary metabolism interactions that, partly, modulate the relative resistance of M. truncatula to diseases caused by soil-borne pathogenic fungi.  相似文献   
93.
Biological Trace Element Research - Excessive adipose tissue promotes the manifestation of endocrine disorders such as reduction of the secretion of zinc-α2-glycoprotein (ZAG), an adipokine...  相似文献   
94.
95.
Evidence regarding the ability of agroforests to conserve biological diversity has been mixed; they tend to maintain avian communities with species richness similar to that of undisturbed forest ecosystems but generally do not completely preserve community composition. Using a combination of occupancy modeling and non-metric multidimensional scaling on point-count data, we assessed changes in avian community diversity and composition along a successional gradient in traditional Lacandon Maya agroforests and compared them to protected areas in the region. Bird species richness and diversity in Lacandon agroforests peaked in early secondary forest stages. These agroforests' mean Shannon–Weiner diversity was 5% higher than that of nearby protected areas, but their species richness was similar. Community composition in Lacandon agroforests changed throughout succession, with earlier stages supporting communities distinctly characterized by generalist species, while subsequent, less-intensively managed stages tended to support more forest-dwellers. The bird community observed in even the most mature secondary forest stages in Lacandon agroforests differed from that of undisturbed rain forest ecosystems. These results demonstrate the potential of traditional Lacandon agroforestry management to conserve avian biodiversity while ensuring food sovereignty for farmers. However, because the community composition of early-successional stages was different than later stages, shortening fallow cycles and reducing forest cover to increase agricultural production will limit the species this system can support. This study illustrates the value of incorporating traditional agroecosystems into conservation planning as well as maintaining protected areas, because the latter serve as refugia for species that require undisturbed forest habitat in an agroecological matrix.  相似文献   
96.

Although the knowledge about biological systems has advanced exponentially in recent decades, it is surprising to realize that the very definition of Life keeps presenting theoretical challenges. Even if several lines of reasoning seek to identify the essence of life phenomenon, most of these thoughts contain fundamental problem in their basic conceptual structure. Most concepts fail to identify either necessary or sufficient features to define life. Here, we analyzed the main conceptual frameworks regarding theoretical aspects that have been supporting the most accepted concepts of life, such as (i) the physical, (ii) the cellular and (iii) the molecular approaches. Based on an ontological analysis, we propose that Life should not be positioned under the ontological category of Matter. Yet, life should be better understood under the top-level ontology of “Process”. Exercising an epistemological approach, we propose that the essential characteristic that pervades each and every living being is the presence of organic codes. Therefore, we explore theories in biosemiotics and code biology in order to propose a clear concept of life as a macrocode composed by multiple inter-related coding layers. This way, as life is a sort of metaphysical process of encoding, the living beings became the molecular materialization of that process. From the proposed concept, we show that the evolutionary process is a fundamental characteristic for life’s maintenance but it is not necessary to define life, as many organisms are clearly alive but they do not participate in the evolutionary process (such as infertile hybrids). The current proposition opens a fertile field of debate in astrobiology, epistemology, biosemiotics, code biology and robotics.

  相似文献   
97.
Sporothrix schenckii is a fungal pathogen of humans and the etiological agent of sporotrichosis. In fungi, proper protein glycosylation is usually required for normal composition of cell wall and virulence. Upon addition of precursor oligosaccharides to nascent proteins in the endoplasmic reticulum, glycans are further modified by Golgi-glycosyl transferases. In order to add sugar residues to precursor glycans, nucleotide diphosphate sugars are imported from the cytosol to the Golgi lumen, the sugar is transferred to glycans, and the resulting nucleoside diphosphate is dephosphorylated by the nucleoside diphosphatase Gda1 before returning to cytosol. Here, we isolated the open reading frame SsGDA1 from a S. schenckii genomic DNA library. In order to confirm the function of SsGda1, we performed complementation assays in a Saccharomyces cerevisiae gda1? null mutant. Our results indicated that SsGDA1 restored the nucleotide diphosphatase activity to wild-type levels and therefore is a functional ortholog of S. cerevisiae GDA1.  相似文献   
98.
Tyrosinemia type II, also known as Richner–Hanhart syndrome, is an autosomal recessive inborn error of metabolism caused by a deficiency of hepatic cytosolic tyrosine aminotransferase, and is associated with neurologic and development difficulties in numerous patients. Considering that the mechanisms underlying the neurological dysfunction in hypertyrosinemic patients are poorly known and that studies demonstrated that high concentrations of tyrosine provoke oxidative stress in vitro and in vivo in the cerebral cortex of rats, in the present study we investigate the oxidative stress parameters (enzymatic antioxidant defenses, thiobarbituric acid-reactive substances and protein carbonyl content) in cerebellum, hippocampus and striatum of 30-old-day rats after acute administration of l-tyrosine. Our results demonstrated that the acute administration of l-tyrosine increased the thiobarbituric acid reactive species levels in hippocampus and the carbonyl levels in cerebellum, hippocampus and striatum. In addition, acute administration of l-tyrosine significantly decreased superoxide dismutase activity in cerebellum, hippocampus and striatum, while catalase was increased in striatum. In conclusion, the oxidative stress may contribute, along with other mechanisms, to the neurological dysfunction characteristic of hypertyrosinemia and the administration of antioxidants may be considered as a potential adjuvant therapy for tyrosinemia, especially type II.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号