首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3081篇
  免费   239篇
  3320篇
  2024年   5篇
  2023年   23篇
  2022年   65篇
  2021年   109篇
  2020年   47篇
  2019年   83篇
  2018年   113篇
  2017年   107篇
  2016年   132篇
  2015年   190篇
  2014年   199篇
  2013年   227篇
  2012年   269篇
  2011年   270篇
  2010年   163篇
  2009年   117篇
  2008年   190篇
  2007年   189篇
  2006年   165篇
  2005年   134篇
  2004年   123篇
  2003年   97篇
  2002年   87篇
  2001年   22篇
  2000年   16篇
  1999年   19篇
  1998年   27篇
  1997年   11篇
  1996年   11篇
  1995年   11篇
  1994年   9篇
  1993年   8篇
  1992年   12篇
  1991年   8篇
  1990年   3篇
  1989年   5篇
  1988年   4篇
  1987年   2篇
  1986年   7篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   4篇
  1980年   3篇
  1978年   5篇
  1977年   4篇
  1970年   1篇
  1961年   3篇
  1960年   1篇
排序方式: 共有3320条查询结果,搜索用时 15 毫秒
61.
Maillard reaction contributes to the chemical modification and cross-linking of proteins. This process plays a significant role in the aging process and determination of animal longevity. Oxidative conditions promote the Maillard reaction. Mitochondria are the primary site of oxidants due to the reactive molecular species production. Mitochondrial proteome cysteine residues are targets of oxidative attack due to their specific chemistry and localization. Their chemical, non-enzymatic modification leads to dysfunctional proteins, which entail cellular senescence and organismal aging. Previous studies have consistently shown that caloric and methionine restrictions, nutritional interventions that increase longevity, decrease the rate of mitochondrial oxidant production and the physiological steady-state levels of markers of oxidative damage to macromolecules. In this scenario, we have detected S-(carboxymethyl)-cysteine (CMC) as a new irreversible chemical modification in mitochondrial proteins. CMC content in mitochondrial proteins significantly correlated with that of the lysine-derived analog N ε-(carboxymethyl)-lysine. The concentration of CMC is, however, one order of magnitude lower compared with CML likely due in part to the lower content of cysteine with respect to lysine of the mitochondrial proteome. CMC concentrations decreases in liver mitochondrial proteins of rats subjected to 8.5 and 25 % caloric restriction, as well as in 40 and 80 % methionine restriction. This is associated with a concomitant and significant increase in the protein content of sulfhydryl groups. Data presented here evidence that CMC, a marker of Cys-AGE formation, could be candidate as a biomarker of mitochondrial damage during aging.  相似文献   
62.
The organization, assembly and remodeling of the actin cytoskeleton provide force and tracks for a variety of (endo)membrane-associated events such as membrane trafficking. This review illustrates in different cellular models how actin and many of its numerous binding and regulatory proteins (actin and co-workers) participate in the structural organization of the Golgi apparatus and in trafficking-associated processes such as sorting, biogenesis and motion of Golgi-derived transport carriers.  相似文献   
63.
A putative carbohydrate binding module (CBM) from strawberry (Fragaria × ananassa Duch.) expansin 2 (CBM-FaExp2) was cloned and the encoding protein was over-expressed in Escherichia coli and purified in order to evaluate its capacity to bind different cell wall polysaccharides “in vitro”. The protein CBM-FaExp2 bound to microcrystalline cellulose, xylan and pectin with different affinities (Kad = 33.6 ± 0.44 mL g?1, Kad = 11.37 ± 0.87 mL g?1, Kad = 10.4 ± 0.19 mL g?1, respectively). According to “in vitro” enzyme assays, this CBM is able to decrease the activity of cell wall degrading enzymes such as polygalacturonase, endo-glucanase, pectinase and xylanase, probably because the binding of CBM-FaExp2 to the different substrates interferes with enzyme activity. The results suggest that expansins would bind not only cellulose but also a wide range of cell wall polymers.  相似文献   
64.
65.
Conformational diversity of the native state plays a central role in modulating protein function. The selection paradigm sustains that different ligands shift the conformational equilibrium through their binding to highest-affinity conformers. Intramolecular vibrational dynamics associated to each conformation should guarantee conformational transitions, which due to its importance, could possibly be associated with evolutionary conserved traits. Normal mode analysis, based on a coarse-grained model of the protein, can provide the required information to explore these features. Herein, we present a novel procedure to identify key positions sustaining the conformational diversity associated to ligand binding. The method is applied to an adequate refined dataset of 188 paired protein structures in their bound and unbound forms. Firstly, normal modes most involved in the conformational change are selected according to their corresponding overlap with structural distortions introduced by ligand binding. The subspace defined by these modes is used to analyze the effect of simulated point mutations on preserving the conformational diversity of the protein. We find a negative correlation between the effects of mutations on these normal mode subspaces associated to ligand-binding and position-specific evolutionary conservations obtained from multiple sequence-structure alignments. Positions whose mutations are found to alter the most these subspaces are defined as key positions, that is, dynamically important residues that mediate the ligand-binding conformational change. These positions are shown to be evolutionary conserved, mostly buried aliphatic residues localized in regular structural regions of the protein like β-sheets and α-helix.  相似文献   
66.
67.
The selection of roosts is considered a critical factor to the survival of Noctilio albiventris. Thus, we located and identified N. albiventris day roosts in the Pantanal, near the Miranda River. We identified four species of tree: Banara arguta, Inga vera, Ocotea diospyrifolia and Vitex cymosa. Additional studies are important to understand the impact of specific requirements in the selection of roosts for Noctilio albiventris and to compare the observed patterns in different environments.  相似文献   
68.
Comparison of Arabidopsis thaliana (Arabidopsis) gene expression induced by Myzus persicae (green peach aphid) feeding, aphid saliva infiltration and abscisic acid (ABA) treatment showed a significant positive correlation. In particular, ABA‐regulated genes are over‐represented among genes that are induced by M. persicae saliva infiltration into Arabidopsis leaves. This suggests that the induction of ABA‐related gene expression could be an important component of the Arabidopsis–aphid interaction. Consistent with this hypothesis, M. persicae populations induced ABA production in wild‐type plants. Furthermore, aphid populations were smaller on Arabidopsis aba1‐1 mutants, which cannot synthesize ABA, and showed a significant preference for wild‐type plants compared with the mutant. Total free amino acids, which play an important role in aphid nutrition, were not altered in the aba1‐1 mutant line, but the levels of isoleucine (Ile) and tryptophan (Trp) were differentially affected by aphids in wild‐type and mutant plants. Recently, indole glucosinolates have been shown to promote aphid resistance in Arabidopsis. In this study, 4‐methoxyindol‐3‐ylmethylglucosinolate was more abundant in the aba1‐1 mutant than in wild‐type Arabidopsis, suggesting that the induction of ABA signals that decrease the accumulation of defence compounds may be beneficial for aphids.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号