首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   736篇
  免费   57篇
  2021年   9篇
  2019年   7篇
  2018年   9篇
  2017年   9篇
  2016年   22篇
  2015年   20篇
  2014年   25篇
  2013年   39篇
  2012年   48篇
  2011年   47篇
  2010年   26篇
  2009年   20篇
  2008年   38篇
  2007年   25篇
  2006年   22篇
  2005年   24篇
  2004年   29篇
  2003年   23篇
  2002年   23篇
  2001年   7篇
  2000年   13篇
  1999年   12篇
  1998年   5篇
  1997年   12篇
  1996年   11篇
  1995年   8篇
  1994年   7篇
  1992年   10篇
  1991年   5篇
  1989年   5篇
  1988年   6篇
  1985年   5篇
  1978年   5篇
  1977年   7篇
  1973年   9篇
  1968年   6篇
  1966年   5篇
  1957年   5篇
  1956年   4篇
  1939年   4篇
  1935年   4篇
  1932年   5篇
  1930年   8篇
  1929年   8篇
  1927年   6篇
  1905年   4篇
  1896年   11篇
  1894年   6篇
  1887年   5篇
  1856年   4篇
排序方式: 共有793条查询结果,搜索用时 15 毫秒
691.
We describe enzymological and structural analyses of the interaction between the family 18 chitinase ChiB from Serratia marcescens and the designed inhibitor N,N'-diacetylchitobionoxime-N-phenylcarbamate (HM508). HM508 acts as a competitive inhibitor of this enzyme with a K(i) in the 50 microM range. Active site mutants of ChiB show K(i) values ranging from 1 to 200 microM, providing insight into some of the interactions that determine inhibitor affinity. Interestingly, the wild type enzyme slowly degrades HM508, but the inhibitor is essentially stable in the presence of the moderately active D142N mutant of ChiB. The crystal structure of the D142N-HM508 complex revealed that the two sugar moieties bind to the -2 and -1 subsites, whereas the phenyl group interacts with aromatic side chains that line the +1 and +2 subsites. Enzymatic degradation of HM508, as well as a Trp --> Ala mutation in the +2 subsite of ChiB, led to reduced affinity for the inhibitor, showing that interactions between the phenyl group and the enzyme contribute to binding. Interestingly, a complex of enzymatically degraded HM508 with the wild type enzyme showed a chitobiono-delta-lactone bound in the -2 and -1 subsites, despite the fact that the equilibrium between the lactone and the hydroxy acid forms in solution lies far toward the latter. This shows that the active site preferentially binds the (4)E conformation of the -1 sugar, which resembles the proposed transition state of the reaction.  相似文献   
692.
The heat shock protein Hsp90 plays a key, but poorly understood role in the folding, assembly and activation of a large number of signal transduction molecules, in particular kinases and steroid hormone receptors. In carrying out these functions Hsp90 hydrolyses ATP as it cycles between ADP- and ATP-bound forms, and this ATPase activity is regulated by the transient association with a variety of co-chaperones. Cdc37 is one such co-chaperone protein that also has a role in client protein recognition, in that it is required for Hsp90-dependent folding and activation of a particular group of protein kinases. These include the cyclin-dependent kinases (Cdk) 4/6 and Cdk9, Raf-1, Akt and many others. Here, the biochemical details of the interaction of human Hsp90 beta and Cdc37 have been characterised. Small angle X-ray scattering (SAXS) was then used to study the solution structure of Hsp90 and its complexes with Cdc37. The results suggest a model for the interaction of Cdc37 with Hsp90, whereby a Cdc37 dimer binds the two N-terminal domain/linker regions in an Hsp90 dimer, fixing them in a single conformation that is presumably suitable for client protein recognition.  相似文献   
693.
Analytical ultracentrifugation (AUC) provides first-principle hydrodynamic and thermodynamic information concerning the size, shape and interactions of macromolecules. The fundamental measurement needed in AUC is the macromolecular concentration as a function of radial position and time. Currently, the Beckman Coulter XLI analytical ultracentrifuge may be equipped with absorbance and refractive detectors, which provide complementary concentration determinations. For detecting trace quantities of materials, fluorescence detection offers unique advantages over either absorbance or interference detection. A prototype fluorescence detector for the XLI analytical ultracentrifuge has been developed and its characteristics determined. An Ar(+) laser provides a continuous 488-nm excitation beam. Radial resolution is achieved by scanning the focused beam along a radial axis. Detection of the fluorescence signal uses a co-axial, front-face optical configuration to reduce inaccuracies in the concentration caused by inner filter effects. A high-speed A/D data acquisition system allows the fluorescence intensity to be monitored continuously and at a sufficiently high angular resolution so that at any radial position the intensities from all of the samples may be acquired at each revolution. The fluorescence detector is capable of detecting concentrations as low as 300 pM for fluorescein-like labels. The radial resolution of the fluorescence detector is comparable to that of the absorbance system. Both sedimentation velocity and sedimentation equilibrium measurements may be made with the fluorescence detector. Results are presented comparing data acquired using the fluorescence with those acquired using the absorbance detector.  相似文献   
694.
695.
Pegylated paramagnetic and fluorescent immunoliposomes were designed to enable the parallel detection of the induced expression of molecular markers on endothelial cells with magnetic resonance imaging (MRI) and fluorescence microscopy. MRI is capable of three-dimensional noninvasive imaging of opaque tissues at near cellular resolution, while fluorescence microscopy can be used to investigate processes at the subcellular level. As a model for the expression of a molecular marker, human umbilical vein endothelial cells (HUVEC) were treated with the pro-inflammatory cytokine tumor necrosis factor alpha (TNFalpha) to upregulate the expression of the adhesion molecule E-selectin/CD62E. E-selectin-expressing HUVEC were incubated with pegylated paramagnetic fluorescently labeled liposomes carrying anti-E-selectin monoclonal antibody as a targeting ligand. Both MRI and fluorescence microscopy revealed the specific association of the liposomal MR contrast agent with stimulated HUVEC. This study suggests that this newly developed system may serve as a useful diagnostic tool to investigate pathological processes in vivo with MRI.  相似文献   
696.
Owen D  Mott HR  Laue ED  Lowe PN 《Biochemistry》2000,39(6):1243-1250
Cdc42 is a member of the Rho family of small G proteins. Signal transduction events emanating from Cdc42 lead to cytoskeletal rearrangements, cell proliferation, and cell differentiation. Many effector proteins have been identified for Cdc42; however, it is not clear how certain effectors specifically recognize and bind to Cdc42, as opposed to Rac or Rho, or in many cases, which effector controls what cellular events. Mutations were introduced into Cdc42 at residues: Met1, Val8, Phe28, Tyr32, Val33, Thr35, Val36, Phe37, Asp38, Tyr40, Val42, Met45, Ile46, Glu127, Ala130, Asn132, Gln134, Lys135, and Leu174. Measurements were made of their equilibrium binding constants to the Cdc42 binding domains of the CRIB effectors ACK, PAK, and WASP and to the GTPase-activating protein Rho GAP. Generally, mutations in the effector loop have an equally deleterious effect on binding to all CRIB proteins tested, though the F37A mutation resulted in significant selectivity. Residues outside the effector loop were found to be important for binding of Cdc42 to CRIB containing proteins and also to contribute to selectivity. Mutations such as V42A and L174A resulted in large, selective changes in binding to specific CRIB effectors. Neither mutation resulted in alteration in PAK binding, whereas both severely disrupt binding to ACK and only L174A disrupted binding to WASP. These mutations are interpreted using the structures of the Cdc42/ACK and Cdc42/WASP complexes to give insight into how effectors can specifically recognize Cdc42. Those mutations in Cdc42 that inhibit certain interactions, while retaining others, should aid investigations of the role of specific effectors in Cdc42 signaling in vivo.  相似文献   
697.
Core binding factors (CBFs) play key roles in several developmental pathways and in human disease. CBFs consist of a DNA binding CBFalpha subunit and a non-DNA binding CBFbeta subunit that increases the affinity of CBFalpha for DNA. We performed sedimentation equilibrium analyses to unequivocally establish the stoichiometry of the CBFalpha:beta:DNA complex. Dissociation constants for all four equilibria involving the CBFalpha Runt domain, CBFbeta, and DNA were defined. Conformational changes associated with interactions between CBFalpha, CBFbeta, and DNA were monitored by nuclear magnetic resonance and circular dichroism spectroscopy. The data suggest that CBFbeta 'locks in' a high affinity DNA binding conformation of the CBFalpha Runt domain.  相似文献   
698.
Antennae of Bombyx mori and Helicoverpa armigera larvae were immunolabelled with antisera raised against the pheromone-binding protein or the general odorant-binding protein 2 of Antheraea polyphemus to assign the expression of these proteins to individual sensilla and to compare the localization pattern with that in sensilla of adult moths. Specific labelling of antennal sensilla was only obtained with the antiserum against general odorant-binding protein 2. Among the few sensilla present on the antenna the three large sensilla basiconica, which are suspected to be olfactory in function, were labelled. These sensilla are compound sensilla consisting of several sensillum units which form a common sensory hair. The hair is single-walled and pierced by many pores. Labelling of sensillum compartments was the same as in sensilla of adults. Prominent labelling of the sensillum lymph is accompanied by labelling of secretory organelles in the two outermost auxiliary cells and of endocytotic pathways in all sensillum cells. The results suggest that general odorant-binding protein is expressed in single-walled multiporous sensilla of presumed olfactory function on the antenna of moth larvae. The overall identity of the localization pattern for general odorant-binding protein between larval and adult sensilla implies a similar role of these proteins in olfactory stimulus transduction.  相似文献   
699.
A key function of reversible protein phosphorylation is to regulate protein–protein interactions, many of which involve short linear motifs (3–12 amino acids). Motif‐based interactions are difficult to capture because of their often low‐to‐moderate affinities. Here, we describe phosphomimetic proteomic peptide‐phage display, a powerful method for simultaneously finding motif‐based interaction and pinpointing phosphorylation switches. We computationally designed an oligonucleotide library encoding human C‐terminal peptides containing known or predicted Ser/Thr phosphosites and phosphomimetic variants thereof. We incorporated these oligonucleotides into a phage library and screened the PDZ (PSD‐95/Dlg/ZO‐1) domains of Scribble and DLG1 for interactions potentially enabled or disabled by ligand phosphorylation. We identified known and novel binders and characterized selected interactions through microscale thermophoresis, isothermal titration calorimetry, and NMR. We uncover site‐specific phospho‐regulation of PDZ domain interactions, provide a structural framework for how PDZ domains accomplish phosphopeptide binding, and discuss ligand phosphorylation as a switching mechanism of PDZ domain interactions. The approach is readily scalable and can be used to explore the potential phospho‐regulation of motif‐based interactions on a large scale.  相似文献   
700.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号