首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20971篇
  免费   1695篇
  国内免费   1712篇
  2024年   32篇
  2023年   264篇
  2022年   703篇
  2021年   1151篇
  2020年   766篇
  2019年   975篇
  2018年   915篇
  2017年   614篇
  2016年   911篇
  2015年   1341篇
  2014年   1519篇
  2013年   1582篇
  2012年   1936篇
  2011年   1697篇
  2010年   997篇
  2009年   922篇
  2008年   1097篇
  2007年   910篇
  2006年   829篇
  2005年   652篇
  2004年   511篇
  2003年   450篇
  2002年   375篇
  2001年   325篇
  2000年   323篇
  1999年   324篇
  1998年   208篇
  1997年   244篇
  1996年   191篇
  1995年   189篇
  1994年   162篇
  1993年   129篇
  1992年   181篇
  1991年   143篇
  1990年   146篇
  1989年   98篇
  1988年   90篇
  1987年   88篇
  1986年   63篇
  1985年   65篇
  1984年   43篇
  1983年   47篇
  1982年   21篇
  1981年   16篇
  1980年   14篇
  1979年   12篇
  1978年   10篇
  1969年   9篇
  1968年   8篇
  1965年   16篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
991.
Pathogenesis of cardiac microvascular ischemia-reperfusion (IR) injury is associated with excessive mitochondrial fission. However, the upstream mediator of mitochondrial fission remains obscure. Bax inhibitor 1 (BI1) is linked to multiple mitochondrial functions, and there have been no studies investigating the contribution of BI1 on mitochondrial fission in the setting of cardiac microvascular IR injury. This study was undertaken to establish the action of BI1 on the cardiac microvascular reperfusion injury and figure out whether BI1 sustained endothelial viability via inhibiting mitochondrial fission. Our observation indicated that BI1 was downregulated in reperfused hearts and overexpression of BI1 attenuated microvascular IR injury. Mechanistically, reperfusion injury elevated the levels of xanthine oxidase (XO), an effect that was followed by increased reactive oxygen species (ROS) production. Subsequently, oxidative stress mediated F-actin depolymerization and the latter promoted mitochondrial fission. Aberrant fission caused mitochondrial dysfunction and ultimately activated mitochondrial apoptosis in cardiac microvascular endothelial cells. By comparison, BI1 overexpression repressed XO expression and thus neutralized ROS, interrupting F-actin-mediated mitochondrial fission. The inhibitory effect of BI1 on mitochondrial fission sustained endothelial viability, reversed endothelial barrier integrity, attenuated the microvascular inflammation response, and maintained microcirculation patency. Altogether, we conclude that BI1 is essential in maintaining mitochondrial homeostasis and alleviating cardiac microvascular IR injury. Deregulated BI1 via the XO/ROS/F-actin pathways plays a causative role in the development of cardiac microvascular reperfusion injury.  相似文献   
992.
The only Food and Drug Administration-approved treatment for acute ischemic stroke is tissue plasminogen activator, and the discovery of novel therapeutic targets is critical. Here, we found orosomucoid (ORM), an acute-phase protein mainly produced by the liver, might act as a treatment candidate for an ischemic stroke. The results showed that ORM2 is the dominant subtype in mice normal brain tissue. After middle cerebral artery occlusion (MCAO), the level of ORM2 is significantly increased in the ischemic penumbra compared with the contralateral normal brain tissue, whereas ORM1 knockout did not affect the infarct size. Exogenous ORM could significantly decrease infarct size and neurological deficit score. Inspiringly, the best administration time point was at 4.5 and 6 hr after MCAO. ORM could markedly decrease the Evans blue extravasation, and improve blood–brain barrier-associated proteins expression in the ischemic penumbra of MACO mice and oxygen–glucose deprivation (OGD)-treated bEnd3 cells. Meanwhile, ORM could significantly alleviate inflammation by inhibiting the production of interleukin 1β (IL-1β), IL-6, and tumor necrosis factor α (TNF-α), reduce oxidative stress by improving the balance of malondialdehyde (MDA) and superoxide dismutase (SOD), inhibit apoptosis by decreasing caspase-3 activity in ischemic penumbra of MCAO mice and OGD-treated bEnd.3 cells. Because of its protective role at multiple levels, ORM might be a promising therapeutic target for ischemic stroke.  相似文献   
993.
994.
The human absent in melanoma 2 (AIM2) is considered as a DNA recognizer. AIM2 has been described as a tumor suppressor gene in the early years. But recent studies suggested that it functions as an oncogene in several cancers. However, its roles in non-small-cell lung cancer (NSCLC) remain unclear. Here we reported that AIM2 highly expressed in NSCLC cells and exhibited a tumor-promoting property both in vitro and in vivo. Besides, AIM2 short hairpin RNA (shRNA)-mediated suppression of cell proliferation was triggered by the accumulation of cells at the G2/M phase. Knockdown of AIM2 reduced the inflammasome formation, while overexpression of AIM2 or stimulation by poly(dA:dT) induced the inflammasome formation. Interestingly, blockade of the inflammasome by caspase-1 inhibitor VX-765 or ASC small interfering RNA (siRNA) abolished the effects brought by AIM2 shRNA and AIM2 plasmid. In summary, our results revealed that AIM2 functioned as an oncogene in NSCLC in an inflammasome-dependent way.  相似文献   
995.
996.
997.
Administration of propofol at the time of reperfusion has shown to protect the heart from ischemia and reperfusion (I/R) injury. The aim of the present study was to investigate the molecular mechanism underling the cardioprotective effect of propofol against myocardial I/R injury (MIRI) in vivo and in vitro. Rat heart I/R injury was induced by ligation of the left anterior descending (LAD) artery for 30 min followed by 2-hr reperfusion. Propofol pretreatment (0.01 mg/g) was performed 10 min before reperfusion. In vitro MIRI was investigated in cultured cardiomyocytes H9C2 following hypoxia/reoxygenation (H/R) injuries. Propofol pretreatment in vitro was achieved in the medium supplemented with 25 μmol/L propofol before H/R injuries. Propofol pretreatment significantly increased miRNA-451 expression, decreased HMGB1 expression, reduced infarct size, and I/R-induced cardiomyocyte apoptosis in rat hearts undergoing I/R injuries. Knockdown of miRNA-451 48 hr before I/R injury was found to increase HMGB1 expression, infarct size, and I/R-induced cardiomyocyte apoptosis in rat hearts in the presence of propofol pretreatment. These in vivo findings were reproduced in vivo that knockdown of miRNA-451 48 hr before H/R injuries increased HMGB1 expression and H/R-induced apoptosis in cultured H9C2 supplemented with propofol. In addition, luciferase activity assays and gain-of-function studies found that propofol could decrease HMGB1, the target of miRNA-541. Taken together our findings provide a first demonstration that propofol-mediated cardioprotection against MIRI is dependent of microRNA-451/HMGB1. The study provides a novel target to prevent I/R injury during propofol anesthesia.  相似文献   
998.
Pyroptosis, a type of programmed cell death mediated by gasdermin, is characterized by the swelling and rupture of cells, release of cellular contents and a strong inflammatory response, which is critical for controlling microbial infection. Pattern recognition receptors recognize the intracellular and extracellular pathogenic microbial components and stimulate the organism's inflammatory response by activating the pyroptosis signaling pathway and releasing interleukin-1β (IL-1β), IL-18, and other inflammatory factors to promote pathogen clearance and prevent infection. In the process of continuous evolution, pathogens have developed multiple strategies to modulate the occurrence of pyroptosis and thus enhance their ability to induce disease; that is, the competition between host cells and pathogens controls the occurrence of pyroptosis. Competition can directly affect tissue inflammation outbreaks and even alter cell survival. Studies have shown that various bacterial infections, including Shigella flexneri, Salmonella, Listeria monocytogenes, and Legionella pneumophila, can lead to pyroptosis. Pyroptosis is associated with the occurrence and development of various diseases caused by microbial infection, and the identification of molecules related to the pyroptosis signaling pathway may provide new drug targets for the treatment of related diseases. This study reviews the molecular mechanisms of pyroptosis and the role of pyroptosis in microbial infection-related diseases.  相似文献   
999.
Oxidized low-density lipoprotein (Ox-LDL)-induced endothelial cell injury plays a crucial role in the pathogenesis of atherosclerosis (AS). Plasma galectin-3 (Gal-3) is elevated inside and drives diverse systemic inflammatory disorders, including cardiovascular diseases. However, the exact role of Gal-3 in ox-LDL-mediated endothelial injury remains unclear. This study explores the effects of Gal-3 on ox-LDL-induced endothelial dysfunction and the underlying molecular mechanisms. In this study, Gal-3, integrin β1, and GTP-RhoA in the blood and plaques of AS patients were examined by ELISA and western blot respectively. Their levels were found to be obviously upregulated compared with non-AS control group. CCK8 assay and flow cytometry analysis showed that Gal-3 significantly decreased cell viability and promoted apoptosis in ox-LDL-treated human umbilical vascular endothelial cells (HUVECs). The upregulation of integrinβ1, GTP-RhoA, p-JNK, p-p65, p-IKKα, and p-IKKβ induced by ox-LDL was further enhanced by treatment with Gal-3. Pretreatment with Gal-3 increased expression of inflammatory factors (interleukin [IL]-6, IL-8, and IL-1β), chemokines(CXCL-1 and CCL-2) and adhesion molecules (VCAM-1 and ICAM-1). Furthermore, the promotional effects of Gal-3 on NF-κB activation and inflammatory factors in ox-LDL-treated HUVECs were reversed by the treatments with integrinβ1-siRNA or the JNK inhibitor. We also found that integrinβ1-siRNA decreased the protein expression of GTP-RhoA and p-JNK, while RhoA inhibitor partially reduced the upregulated expression of p-JNK induced by Gal-3. In conclusion, our finding suggests that Gal-3 exacerbates ox-LDL-mediated endothelial injury by inducing inflammation via integrin β1-RhoA-JNK signaling activation.  相似文献   
1000.
Metastatic dissemination represents the final stage of tumor progression as well as the principal cause of cancer-associated deaths. Calpains are a conserved family of calcium-dependent cysteine proteinases with ubiquitous or tissue-specific expression. Accumulating evidence indicates a central role for calpains in tumor migration and invasion via participating in several key processes, including focal adhesion dynamics, cytoskeletal remodeling, epithelial-to-mesenchymal transition, and apoptosis. Activated after the increased intracellular calcium concentration () induced by membrane channels and extracellular or intracellular stimuli, calpains induce the limited cleavage or functional modulation of various substrates that serve as metastatic mediators. This review covers established literature to summarize the mechanisms and underlying signaling pathways of calpains in cancer metastasis, making calpains attractive targets for aggressive tumor therapies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号