首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   2篇
  国内免费   12篇
  2023年   1篇
  2022年   3篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   4篇
  2016年   3篇
  2015年   4篇
  2014年   5篇
  2013年   2篇
  2012年   3篇
  2011年   8篇
  2010年   1篇
  2008年   3篇
  2007年   5篇
  2006年   5篇
  2004年   2篇
  2003年   4篇
  2002年   2篇
  1999年   1篇
  1995年   2篇
  1994年   2篇
  1989年   1篇
排序方式: 共有68条查询结果,搜索用时 31 毫秒
61.

Key message

The barley eceriferum-b.2 (cer-b.2) mutant produces glossy leaf sheaths and is deficient in the cuticular wax component 14,16-hentriacontanedione. The mutated gene maps to a 1.3-cM interval on chromosome 3HL flanked by the genes MLOC_10972 and MLOC_69561.

Abstract

The cuticular wax coating of leaves and stems in many grass species is responsible for the plants’ glaucous appearance. A major component of the wax is a group of β-diketone compounds. The barley eceriferum-b.2 (cer-b.2) mutant produces glossy leaf sheaths and is deficient for the compound 14,16-hentriacontanedione. A linkage analysis based on 708 gametes allowed the gene responsible for the mutant phenotype to be mapped to a 1.3-cM interval on chromosome 3HL flanked by the two genes MLOC_10972 and _69561. The product of the wild type allele may represent a step in the β-diketone synthesis pathway.
  相似文献   
62.
Metabolomics offers opportunities for studying the systematic response of an organism to a genetic and/or an environmental change. Here, the metabolic consequences of drought stress were characterized in the highly drought tolerant plant Caragana korshinskii. The time-of-flight mass spectrometry platform employed identified several hundred metabolites in extracts of the leaf, stem, root collar, and root of plants which had been either subjected to drought stress or were well-watered. Each of the four organs harbored a number of potential metabolite markers for the drought response. An increased abundance of various small carbohydrates and soluble amino acids in each of the four organs was induced by the stress; these compounds may act as compatible solutes or antioxidants. Across the whole plant, there was a fall in the content of several Krebs cycle and glycolysis intermediates, as well as in that of the amino acids glutamic acid and aspartic acid. Pathway analysis suggested that most of the potential metabolite markers were involved in energy metabolism and amino-acid metabolism. The implication was that energy metabolism and photosynthesis are compromised during the adaptation of C. korshinskii to drought stress. Given the different spectrum of metabolites associated with the drought response in the four organs, it was concluded that each organ employs a distinct strategy to cope with drought stress.  相似文献   
63.
64.
Chen G  Sagi M  Weining S  Krugman T  Fahima T  Korol AB  Nevo E 《Planta》2004,219(4):684-693
Drought is a major abiotic stress that limits plant growth and crop productivity. A spontaneous wilty mutant (eibi1) hypersensitive to drought was identified from wild barley (Hordeum spontaneum Koch). eibi1 showed the highest relative water loss rate among the known wilty mutants, which indicates that eibi1 is one of the most drought-sensitive mutants. eibi1 had the same abscisic acid (ABA) level, the same ability to accumulate stress-induced ABA, and the same stomatal movement in response to light, dark, drought, and exogenous ABA as the wild type, revealing that eibi1 was neither an ABA-deficient nor an ABA-insensitive mutant. The eibi1 leaves had a larger chlorophyll efflux rate in 80% ethanol than the wild-type leaves; and the transpiration rate of eibi1 was more closely related to chlorophyll efflux rate than to stomatal density, demonstrating that the cuticle of eibi1 was defective. eibi1 will be a promising candidate to study the actual barrier layer in the cuticle that limits water loss of the plant. Exogenous ABA reduced leaf length growth in eibi1 more than in the wild type, implying an interaction on plant growth of ABA signal transduction and the eibi1 product. One may infer that the eibi1 product may reverse the growth inhibition induced by ABA.Abbreviation ABA Abscisic acid  相似文献   
65.
Molting is required for progression between larval stages in the life cycle of an insect. The essence of insect molting is the laying down of new cuticle followed by shedding of the old cuticle. Degradation and recycling of old cuticle are brought about by enzymes present in the molting fluid, which fills the space between the old and new cuticle. Here, we describe the cloning of a novel protease gene from Locusta migratoria manilensis, designated as Lm-TSP. The cDNA and its deduced protein sequences were deposited in GenBank (accession numbers EF081255 and ABN13876, respectively). Sequence analysis indicated that Lm-TSP belongs to the trypsin-like serine protease family. We show, by RNA interference (RNAi), that silencing of Lm-TSP leads to dramatic reductions in protease and cuticle-degrading activity of a molting fluid, which leads to molting defects from fourth-instar larvae (L4) to fifth-instar larvae (L5), and between L5 and adult stages. These observations suggest that Lm-TSP plays a critical role in L. migratoria manilensis ecdysis.  相似文献   
66.

Objectives

To examine the possible involvement and regulatory mechanisms of extracellular signal-regulated kinase (ERK) pathway in the temporomandibular joint (TMJ) of rats subjected to chronic sleep deprivation (CSD).

Methods

Rats were subjected to CSD using the modified multiple platform method (MMPM). The serum levels of corticosterone (CORT) and adrenocorticotropic hormone (ACTH) were tested and histomorphology and ultrastructure of the TMJ were observed. The ERK and phospho-ERK (p-ERK) expression levels were detected by Western blot analysis, and the MMP-1, MMP-3, and MMP-13 expression levels were detected by real-time quantitative polymerase chain reaction (PCR) and Western blotting.

Results

The elevated serum CORT and ACTH levels confirmed that the rats were under CSD stress. Hematoxylin and eosin (HE) staining and scanning electron microscopy (SEM) showed pathological alterations in the TMJ following CSD; furthermore, the p-ERK was activated and the mRNA and protein expression levels of MMP-1, MMP-3, and MMP-13 were upregulated after CSD. In the rats administered with the selective ERK inhibitor U0126, decreased tissue destruction was observed. Phospho-ERK activation was visibly blocked and the MMP-1, MMP-3, and MMP-13 mRNA and protein levels were lower than the corresponding levels in the CSD without U0126 group.

Conclusion

These findings indicate that CSD activates the ERK pathway and upregulates the MMP-1, MMP-3, and MMP-13 mRNA and protein levels in the TMJ of rats. Thus, CSD induces ERK pathway activation and causes pathological alterations in the TMJ. ERK may be associated with TMJ destruction by promoting the expression of MMPs.  相似文献   
67.
The apoptosis of cartilage endplates (CEPs), acting as an initiating factor, plays a vital role in the pathogenesis of intervertebral disc degenerative diseases, the underlying molecular mechanism of the apoptotic process in CEPs is still not clear. The present study aimed to investigate the mechanism of CEP cell apoptosis. We found that low levels of fetal bovine serum (FBS) can induce cell apoptosis. Serum deprivation led to high expression levels of caspase-9, caspase-3, PARP, cytochrome-c and Bax. Flow cytometric analysis showed that inhibition of the intrinsic pathway by a caspase-9 inhibitor (z-LEHD-fmk) significantly suppressed serum deprivation-induced apoptosis. However, a caspase-8 inhibitor (z-IETD-fmk) did not reduce apoptotic cell death. These data suggest that serum deprivation induces apoptosis in rat CEP cells via the activation of the intrinsic apoptotic pathway. The efficacy of a caspase-9 inhibitor in attenuating or preventing apoptosis of serum deprivation-induced disc cell apoptosis suggests that targeting the intrinsic apoptotic pathway may be used as a potential therapy for the treatment of disc degeneration.  相似文献   
68.
Transforming growth factor-beta superfamily has been implicated in tumorigenesis. We have recently shown that Nodal, a member of transforming growth factor-beta superfamily, and its receptor, activin receptor-like kinase 7 (ALK7), inhibit proliferation and induce apoptosis in human epithelial ovarian cancer cell lines. In this study, we further investigated the cellular mechanisms underlying the apoptotic action of ALK7 using an immortalized ovarian surface epithelial cell line, IOSE397, and an epithelial ovarian cancer cell line, OV2008. Infection of these cells with an adenoviral construct carrying constitutively active ALK7 (Ad-ALK7-ca) potently induced cell death; all cells died after 3 and 5 days of Ad-ALK7-ca infection in IOSE397 and OV2008 cells, respectively. ALK7-ca induced the expression of proapoptotic factor Bax but suppressed the expression of antiapoptotic factors Bcl-2, Bcl-XL, and Xiap. Silencing of Bax by small interfering RNA in IOSE397 cells significantly reduced ALK7-ca-induced apoptosis as measured by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay but partially blocked ALK7-ca-induced caspase-3 activation and did not affect the down-regulation of Xiap by ALK7-ca. Dominant-negative Smad2, Smad3, and Smad4 blocked ALK7-ca-regulated Xiap and Bax expression and caspase-3 activation. Thus, ALK7-induced apoptosis is at least in part through two Smad-dependent pathways, Bax/Bcl-2 and Xiap.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号