首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41906篇
  免费   3338篇
  国内免费   2462篇
  47706篇
  2024年   60篇
  2023年   488篇
  2022年   1135篇
  2021年   1972篇
  2020年   1229篇
  2019年   1510篇
  2018年   1414篇
  2017年   1090篇
  2016年   1630篇
  2015年   2435篇
  2014年   2855篇
  2013年   3103篇
  2012年   3597篇
  2011年   3404篇
  2010年   1956篇
  2009年   1798篇
  2008年   2091篇
  2007年   1875篇
  2006年   1614篇
  2005年   1424篇
  2004年   1201篇
  2003年   1054篇
  2002年   911篇
  2001年   855篇
  2000年   741篇
  1999年   721篇
  1998年   438篇
  1997年   467篇
  1996年   445篇
  1995年   393篇
  1994年   384篇
  1993年   311篇
  1992年   442篇
  1991年   383篇
  1990年   333篇
  1989年   246篇
  1988年   236篇
  1987年   198篇
  1986年   141篇
  1985年   185篇
  1984年   122篇
  1983年   104篇
  1982年   80篇
  1981年   60篇
  1980年   55篇
  1979年   72篇
  1978年   66篇
  1977年   46篇
  1976年   48篇
  1973年   48篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Nickel is an important kind of metal and a necessary trace element in people’s production and livelihood; it is also a well-confirmed human carcinogen. In the past few years, researchers did a large number of studies about the molecular mechanisms of nickel carcinogenesis, and they focused on activation of proto-oncogenes and inactivation of anti-oncogenes caused by gene point mutation, gene deletion, gene amplification, DNA methylation, chromosome condensation, and so on that were induced by nickel. However, the researches on tumorigenic molecular mechanisms regulated by microRNAs (miRNAs) are rare. In this study, we established nickel-induced tumor by injecting Ni3S2 compounds to Wistar Rattus. By establishing a cDNA library of miRNA from rat muscle tumor tissue induced by Ni3S2, we found that the expression of miR-222 was significantly upregulated in tumor tissue compared with the normal tissue. As we expected, the expression levels of target genes of miR-222, CDKN1B and CDKN1C, were downregulated in the nickel-induced tumor. The same alteration of miR-222 and its target genes was also found in malignant 16HBE cells induced with Ni3S2 compounds. We conclude that miR-222 may promote cell proliferation infinitely during nickel-induced tumorigenesis in part by regulating the expression of its target genes CDKN1B and CDKN1C. Our study elucidated a novel molecular mechanism of nickel-induced tumorigenesis.  相似文献   
992.
A method for simultaneous humanization and affinity maturation of monoclonal antibodies has been developed using heavy chain complementarity-determining region (CDR) 3 grafting combined with somatic hypermutation in vitro. To minimize the amount of murine antibody-derived antibody sequence used during humanization, only the CDR3 region from a murine antibody that recognizes the cytokine hβNGF was grafted into a nonhomologous human germ line V region. The resulting CDR3-grafted HC was paired with a CDR-grafted light chain, displayed on the surface of HEK293 cells, and matured using in vitro somatic hypermutation. A high affinity humanized antibody was derived that was considerably more potent than the parental antibody, possessed a low pm dissociation constant, and demonstrated potent inhibition of hβNGF activity in vitro. The resulting antibody contained half the heavy chain murine donor sequence compared with the same antibody humanized using traditional methods.  相似文献   
993.
Nicotinic acetylcholine receptors (nAChRs) are targets of general anesthetics, but functional sensitivity to anesthetic inhibition varies dramatically among different subtypes of nAChRs. Potential causes underlying different functional responses to anesthetics remain elusive. Here we show that in contrast to the α7 nAChR, the α7β2 nAChR is highly susceptible to inhibition by the volatile anesthetic isoflurane in electrophysiology measurements. Isoflurane-binding sites in β2 and α7 were found at the extracellular and intracellular end of their respective transmembrane domains using NMR. Functional relevance of the identified β2 site was validated via point mutations and subsequent functional measurements. Consistent with their functional responses to isoflurane, β2 but not α7 showed pronounced dynamics changes, particularly for the channel gate residue Leu-249(9′). These results suggest that anesthetic binding alone is not sufficient to generate functional impact; only those sites that can modulate channel dynamics upon anesthetic binding will produce functional effects.  相似文献   
994.
995.
Eukaryotic cells critically depend on the correct regulation of intracellular vesicular trafficking to transport biological material. The Rab subfamily of small guanosine triphosphatases controls these processes by acting as a molecular on/off switch. To fulfill their function, active Rab proteins need to localize to intracellular membranes via posttranslationally attached geranylgeranyl lipids. Each member of the manifold Rab family localizes specifically to a distinct membrane, but it is unclear how this specific membrane recruitment is achieved. Here, we demonstrate that Rab-activating guanosine diphosphate/guanosine triphosphate exchange factors (GEFs) display the minimal targeting machinery for recruiting Rabs from the cytosol to the correct membrane using the Rab-GEF pairs Rab5A–Rabex-5, Rab1A-DrrA, and Rab8-Rabin8 as model systems. Specific mistargeting of Rabex-5/DrrA/Rabin8 to mitochondria led to catalytic recruitment of Rab5A/Rab1A/Rab8A in a time-dependent manner that required the catalytic activity of the GEF. Therefore, RabGEFs are major determinants for specific Rab membrane targeting.  相似文献   
996.
Centriole duplication begins with the formation of a single procentriole next to a preexisting centriole. CPAP (centrosomal protein 4.1–associated protein) was previously reported to participate in centriole elongation. Here, we show that CEP120 is a cell cycle–regulated protein that directly interacts with CPAP and is required for centriole duplication. CEP120 levels increased gradually from early S to G2/M and decreased significantly after mitosis. Forced overexpression of either CEP120 or CPAP not only induced the assembly of overly long centrioles but also produced atypical supernumerary centrioles that grew from these long centrioles. Depletion of CEP120 inhibited CPAP-induced centriole elongation and vice versa, implying that these proteins work together to regulate centriole elongation. Furthermore, CEP120 was found to contain an N-terminal microtubule-binding domain, a C-terminal dimerization domain, and a centriolar localization domain. Overexpression of a microtubule binding–defective CEP120-K76A mutant significantly suppressed the formation of elongated centrioles. Together, our results indicate that CEP120 is a CPAP-interacting protein that positively regulates centriole elongation.  相似文献   
997.
998.
Fatty acid synthase (FASN) is a key enzyme in the synthesis of palmitate, the precursor of major nutritional, energetic, and signaling lipids. FASN expression is upregulated in many human cancers and appears to be important for cancer cell survival. Overexpression of FASN has also been found to associate with poor prognosis and higher risk of recurrence of human cancers. Indeed, elevated FASN expression has been shown to contribute to drug resistance. However, the mechanism of FASN-mediated drug resistance is currently unknown. In this study, we show that FASN overexpression causes resistance to multiple anticancer drugs via inhibiting drug-induced ceramide production, caspase 8 activation, and apoptosis. We also show that FASN overexpression suppresses tumor necrosis factor-α production and nuclear factor-κB activation as well as drug-induced activation of neutral sphingomyelinase. Thus, TNF-α may play an important role in mediating FASN function in drug resistance.  相似文献   
999.
1000.
Binding of the A1 domain of von Willebrand factor (vWF) to glycoprotein Ibα (GPIbα) results in platelet adhesion, activation, and aggregation that initiates primary hemostasis. Both the elevated shear stress and the mutations associated with type 2B von Willebrand disease enhance the interaction between A1 and GPIbα. Through molecular dynamics simulations for wild-type vWF-A1 and its eight gain of function mutants (R543Q, I546V, ΔSS, etc.), we found that the gain of function mutations destabilize the N-terminal arm, increase a clock pendulum-like movement of the α2-helix, and turn a closed A1 conformation into a partially open one favoring binding to GPIbα. The residue Arg578 at the α2-helix behaves as a pivot in the destabilization of the N-terminal arm and a consequent dynamic change of the α2-helix. These results suggest a localized dynamics-driven affinity regulation mechanism for vWF-GPIbα interaction. Allosteric drugs controlling this intrinsic protein dynamics may be effective in blocking the GPIb-vWF interaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号