首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58188篇
  免费   4624篇
  国内免费   4506篇
  67318篇
  2024年   142篇
  2023年   791篇
  2022年   1851篇
  2021年   3048篇
  2020年   2094篇
  2019年   2534篇
  2018年   2370篇
  2017年   1809篇
  2016年   2552篇
  2015年   3634篇
  2014年   4387篇
  2013年   4457篇
  2012年   5291篇
  2011年   4762篇
  2010年   2892篇
  2009年   2603篇
  2008年   2949篇
  2007年   2649篇
  2006年   2278篇
  2005年   1897篇
  2004年   1512篇
  2003年   1426篇
  2002年   1081篇
  2001年   923篇
  2000年   893篇
  1999年   821篇
  1998年   514篇
  1997年   461篇
  1996年   496篇
  1995年   437篇
  1994年   417篇
  1993年   336篇
  1992年   455篇
  1991年   328篇
  1990年   287篇
  1989年   272篇
  1988年   212篇
  1987年   198篇
  1986年   177篇
  1985年   156篇
  1984年   119篇
  1983年   124篇
  1982年   81篇
  1981年   47篇
  1980年   55篇
  1979年   64篇
  1976年   47篇
  1974年   55篇
  1973年   45篇
  1972年   53篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Endothelial cells (ECs) released microvesicles (EMVs) could modulate the functions of target cells by transferring their microRNAs (miRs). We have reported that miR-125a-5p protected EC function. In this study, we determined whether EMVs provided beneficial effects on ECs by transferring miR-125a-5p. Human brain microvessel ECs were transfected with miR-125a-5p mimic or miR-125a-5p short hairpin RNA to obtain miR-125a-5p overexpressing ECs and miR-125a-5p knockdown ECs, and their derived EMVs. For the functional study, ECs or hypoxia/reoxygenation injured ECs were coincubated with various EMVs. The survival and angiogenic function of ECs were measured. Western blot and quantitative real time polymerase chain reaction (qRT-PCR) were used for measuring the levels of phosphoinositide 3-kinase (PI3K), phosphorylation-Akt (p-Akt)/Akt, p-endothelial nitric oxide synthase (p-eNOS), cleaved caspase-3, and miR-125a-5p. PI3K inhibitor was used for pathway analysis. EMVs promoted the proliferation, migration, and tube formation ability of ECs, and alleviated the apoptotic rate of ECs. These effects were associated by an increase in p-Akt/Akt and p-eNOS, and a decrease in cleaved caspase-3 could be abolished by LY294002. Overexpression or downregulation of miR-125a-5p in EMVs promoted or inhibited those effects of EMVs. EMVs could enhance the survival and angiogenic function of ECs via delivering miR-125a-5p to modulate the expression of PI3K/Akt/eNOS pathway and caspase-3.  相似文献   
992.
Heart failure (HF) remains a common complication after acute ST-segment elevation myocardial infarction (STEMI). Here, we aim to identify critical genes related to the developed HF in patients with STEMI using bioinformatics analysis. The microarray data of GSE59867, including peripheral blood samples from nine patients with post-infarct HF and eight patients without post-infarct HF, were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between HF and non-HF groups were screened by LIMMA package. Functional enrichment analyses of DEGs were conducted, followed by construction of a protein-protein interaction (PPI) network. The dynamic messenger RNA (mRNA) level of the hub genes during the follow-up was analyzed to further elucidate their role in HF development. A total of 58 upregulated and 75 downregulated DEGs were screen out. They were mainly enriched in biological processes about inflammatory response, extracellular matrix organization, response to cAMP, immune response, and positive regulation of cytosolic calcium ion concentration. Pathway analysis revealed that the DEGs were also involved in hematopoietic cell lineage, pathways in cancer, and extracellular matrix-receptor interaction. In the PPI network consisting of 58 nodes and 72 interactions, CXCL8 (degree = 15), THBS1 (degree = 8), FOS (degree = 7), and ITGA2B (degree = 6) were identified as the hub genes. In the comparison of patients with and without post-infarct HF, the mRNA level of these hub genes were all higher within 30 days but reached similar at 6 months after STEMI. In conclusion, CXCL8, THBS1, FOS, and ITGA2B may play important roles in the development of HF after acute STEMI.  相似文献   
993.
994.
Cervical cancer is the fourth most lethal human malignancy and the leading cause of death among females around the world. Many antitumor agents have microbial origins. 5′-epi-SPA-6952A is a new 24-membered macrolide isolated from the cultured broth of Streptomyces diastatochromogenes. Therefore, we studied the activity and molecular mechanism of 5′-epi-SPA-6952A in human cervical carcinoma HeLa cell. The results showed that 5′-epi-SPA-6952A significantly inhibited cell proliferation and migration. In addition, 5′-epi-SPA-6952A obviously increased the production of intracellular reactive oxygen species and DNA damage in HeLa cells. Moreover, nuclear shrinkage of cells, decrease in mitochondrial membrane potential, and upregulation of Bax/Bcl-2 ratio resulted in the release of cytochrome c, and activation of caspase-9/3 was observed in HeLa cells treated with 5′-epi-SPA-6952A, which means it enhanced the intrinsic mitochondrial apoptosis. Besides, DNA-damage associated proteins poly (ADP-ribose) polymerase (PARP) and p53 were also studied, and the expressions of cleaved-PARP and p53 were drastically increased in HeLa cells treated with 5′-epi-SPA-6952A. Furthermore, we confirmed that 5′-epi-SPA-6952A affected the survival of HeLa cells by blocking cell cycle progression in the G1 phase. Taken together, the results shows that 5′-epi-SPA-6952A significantly inhibited HeLa cells proliferation via intrinsic mitochondrial apoptosis, cell cycle arrest, and blocking cell migration.  相似文献   
995.
996.
MicroRNAs (miRNAs) have been established to regulate skeletal muscle development in mammals. However, few studies have been conducted on the regulation of proliferation and differentiation of bovine myoblast cells by miRNAs. The aim of our study was to explore the function of miR-483 in cell proliferation and differentiation of bovine myoblast. Here, we found that miR-483 declined in both proliferation and differentiation stages of bovine myoblast cells. During the proliferation phase, the overexpression of miR-483 downregulated the cell cycle–associated genes cyclin-dependent kinase 2 (CDK2), proliferating cell nuclear antigen (PCNA) messenger RNA (mRNA), and the protein levels. At the cellular level, cell cycle, cell counting kit-8, and 5-ethynyl-2´-deoxyuridine results indicated that the overexpression of miR-483 block cell proliferation. During differentiation, the overexpression of miR-483 led to a decrease in the levels of the myogenic marker genes MyoD1 and MyoG mRNA and protein. Furthermore, the immunofluorescence analysis results showed that the number of MyHC-positive myotubes was reduced. In contrast, the opposite experimental results were obtained concerning both proliferation and differentiation after the inhibition of miR-483. Mechanistically, we demonstrated that miR-483 target insulin-like growth factor 1 (IGF1) and downregulated the expression of key proteins in the PI3K/AKT signaling pathway. Altogether, our findings indicate that miR-483 acts as a negative regulator of bovine myoblast cell proliferation and differentiation.  相似文献   
997.
998.
999.
The side lobes of Bessel beam will create significant out‐of‐focus background when scanned in light‐sheet fluorescence microscopy (LSFM), limiting the axial resolution of the imaging system. Here, we propose to overcome this issue by scanning the sample twice with zeroth‐order Bessel beam and another type of propagation‐invariant beam, complementary to the zeroth‐order Bessel beam, which greatly reduces the out‐of‐focus background created in the first scan. The axial resolution can be improved from 1.68 μm of the Bessel light‐sheet to 1.07 μm by subtraction of the two scanned images across a whole field‐of‐view of up to 300 μm × 200 μm × 200 μm. The optimization procedure to create the complementary beam is described in detail and it is experimentally generated with a spatial light modulator. The imaging performance is validated experimentally with fluorescent beads as well as eGFP‐labeled mouse brain neurons.   相似文献   
1000.
  • The dormancy of seeds of upland cotton can be broken during dry after‐ripening, but the mechanism of its dormancy release remains unclear.
  • Freshly harvested cotton seeds were subjected to after‐ripening for 180 days. Cotton seeds from different days of after‐ripening (DAR) were sampled for dynamic physiological determination and germination tests. The intact seeds and isolated embryos were germinated to assess effects of the seed coat on embryo germination. Content of H2O2 and phytohormones and activities of antioxidant enzymes and glucose‐6‐phosphate dehydrogenase were measured during after‐ripening and germination.
  • Germination of intact seeds increased from 7% upon harvest to 96% at 30 DAR, while embryo germination improved from an initial rate of 82% to 100% after 14 DAR. Based on T50 (time when 50% of seeds germinate) and germination index, the intact seed and isolated embryo needed 30 and 21 DAR, respectively, to acquire relatively stable germination. The content of H2O2 increased during after‐ripening and continued to increase within the first few hours of imbibition, along with a decrease in abscisic acid (ABA) content. A noticeable increase was observed in gibberellic acid content during germination when ABA content decreased to a lower level. Coat removal treatment accelerated embryo absorption of water, which further improved the accumulation of H2O2 and changed peroxidase content during germination.
  • For cotton seed, the alleviation of coat‐imposed dormancy required 30 days of after‐ripening, accompanied by rapid dormancy release (within 21 DAR) in naked embryos. H2O2 acted as a core link between the response to environmental changes and induction of other physiological changes for breaking seed dormancy.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号