首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11277篇
  免费   566篇
  国内免费   670篇
  12513篇
  2024年   104篇
  2023年   173篇
  2022年   388篇
  2021年   659篇
  2020年   413篇
  2019年   484篇
  2018年   416篇
  2017年   315篇
  2016年   462篇
  2015年   716篇
  2014年   822篇
  2013年   809篇
  2012年   1027篇
  2011年   818篇
  2010年   495篇
  2009年   469篇
  2008年   506篇
  2007年   479篇
  2006年   390篇
  2005年   367篇
  2004年   285篇
  2003年   256篇
  2002年   188篇
  2001年   207篇
  2000年   150篇
  1999年   164篇
  1998年   97篇
  1997年   109篇
  1996年   112篇
  1995年   101篇
  1994年   107篇
  1993年   65篇
  1992年   64篇
  1991年   85篇
  1990年   53篇
  1989年   43篇
  1988年   25篇
  1987年   16篇
  1986年   14篇
  1985年   23篇
  1984年   14篇
  1983年   17篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
901.
Biclustering is an important tool in microarray analysis when only a subset of genes co-regulates in a subset of conditions. Different from standard clustering analyses, biclustering performs simultaneous classification in both gene and condition directions in a microarray data matrix. However, the biclustering problem is inherently intractable and computationally complex. In this paper, we present a new biclustering algorithm based on the geometrical viewpoint of coherent gene expression profiles. In this method, we perform pattern identification based on the Hough transform in a column-pair space. The algorithm is especially suitable for the biclustering analysis of large-scale microarray data. Our studies show that the approach can discover significant biclusters with respect to the increased noise level and regulatory complexity. Furthermore, we also test the ability of our method to locate biologically verifiable biclusters within an annotated set of genes.  相似文献   
902.
Cryptosporidium parvum oocysts in drinking water have been implicated in outbreaks of diarrheal disease. Current methods for monitoring environmental exposures to C. parvum only account for total number of oocysts without regard for the viability of the parasite. Measurement of oocyst viability, as indicated by an oocyst's ability to excyst, is useful because over time oocysts lose the ability to excyst and become noninfective. Thus, correlating the number of viable oocysts in drinking water with incidence and risk for disease should be more reliable than using the total number of oocysts. We have developed a quantitative assay capable of detecting low numbers of excystable, sporozoite-releasing C. parvum oocysts in turbid water samples. Monoclonal (CP7) and polyclonal antibodies have been developed against a sporozoite antigen released only during excystation or when the oocyst is mechanically disrupted. CP7 is specific for C. parvum and does not react with C. baileyi, C. muris, C. serpentis, Giardia spp., Eimeria spp., or E. nieschulzi. In this assay, oocysts in the test sample are first excysted and then centrifuged. The soluble sporozoite antigen is captured by CP7 attached to a magnetic bead. The captured antigen is then detected by ruthenium-labeled polyclonal antibodies via electrochemiluminescence. The CP7 viability assay can detect as few as 50 viable oocysts in a 1-ml assay sample with a turbidity as high as 200 Nephelometric turbidity units. This sensitive, turbidity-tolerant assay for oocyst viability may permit a better assessment of the disease risk associated with the presence of environmental oocysts.  相似文献   
903.
The intermolecular interactions between Aun (n = 3–4) clusters and selected amino acids cysteine and glycine have been investigated by means of density functional theory (DFT). Present calculations show that the complexes possessing Au-NH2 anchoring bond are found to be energetically favored. The results of NBO and frontier molecular orbitals analysis indicate that for the complex with anchoring bonds, lone pair electrons of sulfur, oxygen, and nitrogen atoms are transferred to the antibonding orbitals of gold, while for the complex with the nonconventional hydrogen bonds (Au···H–O), the lone pair electrons of gold are transferred to the antibonding orbitals of O-H bonds during the interaction. Furthermore, the interaction energy calculations show that the complexes with Au-NH2 anchoring bond have relatively high intermolecular interaction energy, which is consistent with previous computational studies.  相似文献   
904.
Recent studies have suggested that some kinds of microbial infection may have a crucial role in the development of many diseases such as autoimmune diseases and certain types of cancer. It has been reported that some chronic infections, such as Chlamydia pneumoniae, and immunological dysfunctions are associated with age-related macular degeneration (AMD), a leading cause of blindness. To evaluate the association between systemic low-level inflammation induced by infection and AMD pathogenesis, we investigated whether intraperitoneal injection of lipopolysaccharide (LPS) can modulate the development of laser-induced choroidal neovascularization (CNV), a key feature of AMD. Contrary to our expectations, the sizes of CNV in mice with LPS pretreatment were approximately 65% smaller than those of the control mice. After LPS pretreatment, serum IL-10 concentration and IL-10 gene expression in peritoneal macrophages and in the posterior part of the eye increased. Peritoneal injection of anti-IL10 antibody reduced CNV suppression by LPS pretreatment. Moreover, adoptive transfer of the resident peritoneal macrophages from LPS-treated mice into control littermates resulted in an approximately 26% reduction in the size of CNV compared with PBS-treated mice. We concluded that CNV formation was suppressed by low-dose LPS pretreatment via IL-10 production by macrophages.  相似文献   
905.
The aryl hydrocarbon receptor (AhR) mediates many toxic effects of environmental pollutants. AhR also interacts with multiple growth factor-driven signaling pathways. In the course of examining effects of growth factors on proliferation of human colon cancer cells, we identified cross talk between AhR and the epidermal growth factor receptor (EGFR). In the present work, we explored underlying signal transduction mechanisms and functional consequences of this interaction. With the use of two human colon cancer cell lines, H508 and SNU-C4, we examined the effects of AhR ligands including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on cell proliferation and activation of EGFR, ERK1/2, and Src kinases. In colon cancer cells, 5-day incubation with TCDD stimulated a twofold dose-dependent increase in cell proliferation that was detectable with 1 nM and maximal with 30 nM TCDD. TCDD induced dose- and time-dependent phosphorylation of EGFR (Tyr845) and ERK1/2; maximal phosphorylation was observed 5 to 10 min after addition of 30 nM TCDD. Both TCDD-induced ERK1/2 phosphorylation and cell proliferation were abolished by AhR small interfering RNA, AhR-specific inhibitor CH223191, Src kinase inhibitor PP2, neutralizing antibodies against matrix metalloproteinase 7, heparin-binding-EGF-like growth factor and EGFR, EGFR inhibitors (AG1478 and PD168393), and MEK1 inhibitor PD98059. Coimmunoprecipitation experiments revealed that AhR forms a protein complex with Src and regulates Src activity by phosphorylating Src (Tyr416) and dephosphorylating Src (Tyr527). These data support novel observations that, in human colon cancer cells, Src-mediated cross talk between aryl hydrocarbon and EGFR results in ERK1/2 activation, thereby stimulating cell proliferation.  相似文献   
906.
Cargo sorting and the subsequent membrane carrier formation require a properly organized endosomal actin network. To better understand the actin dynamics during endocytic recycling, we performed a genetic screen in C. elegans and identified RTKN-1/Rhotekin as a requisite to sustain endosome-associated actin integrity. Loss of RTKN-1 led to a prominent decrease in actin structures and basolateral recycling defects. Furthermore, we showed that the presence of RTKN-1 thwarts the actin disassembly competence of UNC-60A/cofilin. Consistently, in RTKN-1–deficient cells, UNC-60A knockdown replenished actin structures and alleviated the recycling defects. Notably, an intramolecular interaction within RTKN-1 could mediate the formation of oligomers. Overexpression of an RTKN-1 mutant form that lacks self-binding capacity failed to restore actin structures and recycling flow in rtkn-1 mutants. Finally, we demonstrated that SDPN-1/Syndapin acts to direct the recycling endosomal dwelling of RTKN-1 and promotes actin integrity there. Taken together, these findings consolidated the role of SDPN-1 in organizing the endosomal actin network architecture and introduced RTKN-1 as a novel regulatory protein involved in this process.  相似文献   
907.
Xu  Zhenzhen  Jiang  Jianxiang  Xu  Shengyuan  Xie  Zunchun  He  Pei  Jiang  Shishi  Xu  Renshi 《Cellular and molecular neurobiology》2022,42(4):1035-1046

Nerve growth factor (NGF) is a protective factor of neural cells; the possible relationship between the NGF and the pathogenesis of amyotrophic lateral sclerosis (ALS) hasn’t been completely known. In this study, we observed and analyzed the expression and distribution of NGF, as well as the possible relationship between the NGF expression and distribution and the neural cell death in both SOD1 wild-type (WT) and Tg(SOD1*G93A)1Gur (TG) mice applying the fluorescence immunohistochemistry method. The results showed that the expression and distribution of NGF in the anterior horn (AH), the lateral horn (LH), and the surrounding central canal (CC) significantly increased at the supper early stage of ALS (Pre-onset stage) and the early stage (Onset stage), but the NGF expression and distribution in the AH, the LH, and the surrounding CC significantly reduced at the progression stage. The astrocyte, neuron, and oligodendrocyte produced the NGF and the neural precursor cells (NPCs) produced the NGF. The neural cell death gradually increased accompanying with the reduction of NGF expression and distribution. Our data suggested that the NGF was a protective factor of neural cells, because the neural cells in the AH, the LH, and the surrounding CC produced more NGF at the supper early and early stage of ALS; moreover, the NPCs produced the NGF. It implied that the NGF exerted the protective effect of neural cells, prevented from the neural cell death and aroused the potential of self-repair in the development of ALS.

  相似文献   
908.
Studies have identified a sub‐group of SGS3‐LIKE proteins including FDM1–5 and IDN2 as key components of RNA‐directed DNA methylation pathway (RdDM). Although FDM1 and IDN2 bind RNAs with 5′ overhangs, their functions in the RdDM pathway remain to be examined. Here we show that FDM1 interacts with itself and with IDN2. Gel filtration suggests that FDM1 may exist as a homodimer in a heterotetramer complex in vivo. The XH domain of FDM1 mediates the FDM1–FDM1 and FDM1–IDN2 interactions. Deletion of the XH domain disrupts FDM1 complex formation and results in loss‐of‐function of FDM1. These results demonstrate that XH domain‐mediated complex formation of FDM1 is required for its function in RdDM. In addition, FDM1 binds unmethylated but not methylated DNAs through its coiled‐coil domain. RNAs with 5′ overhangs does not compete with DNA for binding by FDM1, indicating that FDM1 may bind DNA and RNA simultaneously. These results provide insight into how FDM1 functions in RdDM.  相似文献   
909.
Since the interneuronal messenger nitric oxide (NO) can not be stored in neurones, the regulation of the NO-producing enzyme nitric oxide synthase (NOS) is crucial. Neuronal NOS metabolises L-arginine to nitric oxide (NO) and L-citrulline in a Ca(2+)-dependent manner. Thus, availability of L-arginine to NOS may modulate NO production. In this study, we examined the cellular distribution of reduced nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase, L-arginine and L-citrulline. Using NADPH-diaphorase histochemistry to visualise putative NO-producing cells and immunocytochemistry to localise L-arginine, we showed that the distribution of L-arginine-immunoreactive neurones correlates well with those of NADPH-diaphorase-positive neurones in cerebral ganglia of the pulmonate Helix pomatia. However, substrate and enzyme were visualised in separate but adjacent neurones. We further examined whether NADPH-diaphorase-labelled cells contain the L-citrulline. Following elevation of intracellular Ca(2+) by the Ca(2+) ionophore, ionomycin, or by a high-K(+) solution, the number of L-citrulline-immunoreactive neurones in mesocerebrum and pedal lobe increased up to tenfold. Preincubation of ganglia with the NOS inhibitor N(G)-nitro-L-arginine prevented ionomycin or high-K(+) solution-induced L-citrulline synthesis. Most L-citrulline-immunoreactive neurones contain NADPH-diaphorase activity. In conclusion, these experiments indicate a complementary distribution of NOS and L-arginine and suggest an unknown signalling pathway between neurones to maintain L-arginine and NO homeostasis.  相似文献   
910.
The majority of hematopoietic stem/progenitor cells (HSPCs) reside in bone marrow (BM) surrounded by a specialized environment, which governs HSPC function. Here we investigated the potential role of bone remodeling cells (osteoblasts and osteoclasts) in homeostasis and stress‐induced HSPC mobilization. Peripheral blood (PB) and BM in steady/mobilized state were collected from healthy donors undergoing allogeneic transplantation and from mice treated with granulocyte colony stimulating factor (G‐CSF), parathyroid hormone (PTH), or receptor activator of nuclear factor kappa‐B ligand (RANKL). The number and the functional markers of osteoblasts and osteoclasts were checked by a series of experiments. Our data showed that the number of CD45?Ter119? osteopontin (OPN)+ osteoblasts was significantly reduced from 4,085 ± 135 cells/femur on Day 0 to 1,032 ± 55 cells/femur on Day 5 in mice (P = 0.02) and from 21.38 ± 0.66 on Day 0 to 14.78 ± 0.65 on Day 5 in healthy donors (P < 0.01). Decrease of osteoblast number leads to reduced level of HSPC mobilization regulators stromal cell‐derived factor‐1 (SDF‐1), stem cell factor (SCF), and OPN. The osteoclast number at bone surface (OC.N/B.s) was significantly increased from 1.53 ± 0.12 on Day 0 to 4.42 ± 0.46 on Day 5 (P < 0.01) in G‐CSF‐treated mice and from 0.88 ± 0.20 on Day 0 to 3.24 ± 0.31 on Day 5 (P < 0.01) in human. Serum TRACP‐5b level showed a biphasic trend during G‐CSF treatment. The ratio of osteoblasts number per bone surface (OB.N/B.s) to OC.N/B.s was changed after adding PTH plus RANKL during G‐CSF treatment. In conclusion, short term G‐CSF treatment leads to reduction of osteoblasts and stimulation of osteoclasts, and interrupting bone remodeling balance may contribute to HSPC mobilization. J. Cell. Physiol. © 2012 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号