首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33176篇
  免费   2705篇
  国内免费   2899篇
  38780篇
  2024年   110篇
  2023年   512篇
  2022年   1126篇
  2021年   1864篇
  2020年   1288篇
  2019年   1555篇
  2018年   1449篇
  2017年   1077篇
  2016年   1497篇
  2015年   2152篇
  2014年   2491篇
  2013年   2668篇
  2012年   3011篇
  2011年   2744篇
  2010年   1665篇
  2009年   1487篇
  2008年   1667篇
  2007年   1384篇
  2006年   1338篇
  2005年   970篇
  2004年   914篇
  2003年   834篇
  2002年   720篇
  2001年   605篇
  2000年   528篇
  1999年   502篇
  1998年   359篇
  1997年   301篇
  1996年   276篇
  1995年   246篇
  1994年   186篇
  1993年   169篇
  1992年   214篇
  1991年   168篇
  1990年   146篇
  1989年   108篇
  1988年   87篇
  1987年   77篇
  1986年   47篇
  1985年   54篇
  1984年   35篇
  1983年   31篇
  1982年   21篇
  1981年   11篇
  1980年   12篇
  1979年   12篇
  1978年   11篇
  1977年   8篇
  1975年   11篇
  1973年   7篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
271.
The application of tyrosine kinase inhibitors (TKIs) to the epidermal growth factor receptor (EGFR) has been proven to be highly effective for non‐small‐cell lung cancer (NSCLC). However, patients often evolve into acquired resistance. The secondary mutations in EGFR account for nearly half of the acquired resistance. While the remaining 50% of patients exhibit tolerance to EGFR‐TKIs with unclear mechanism(s). Cylindromatosis (CYLD), a deubiquitinase, functions as a tumor suppressor to regulate cell apoptosis, proliferation, and immune response, and so on. The role of CYLD in NSCLC EGFR‐TKI resistance remains elusive. Here, we found CYLD was upregulated in PC‐9 cells, whereas downregulated in PC‐9 acquired gefitinib‐resistant (PC‐9/GR) cells in response to the treatment of gefitinib, which is consistent with the results in the Gene Expression Omnibus database. Overexpression of CYLD promoted a more apoptotic death ratio in PC‐9/GR cells than that in PC‐9 cells. In addition, silencing the expression of CYLD resulted in an increase of the expression level of interleukin‐6, transforming growth factor‐β and tumor necrosis factor‐α, which may contribute to acquired resistance of PC‐9 cells to gefitinib. Taken together, our data in vitro demonstrate that PC‐9/GR cells downregulated CYLD expression, enhanced subsequent CYLD‐dependent antiapoptotic capacity and inflammatory response, which may provide a possible target for acquired gefitinib‐resistant treatment in NSCLC.  相似文献   
272.
A paper published in Global Change Biology in 2006 revealed that phenological responses in 1971–2000 matched the warming pattern in Europe, but a lack of chilling and adaptation in farming may have reversed these findings. Therefore, for 1951–2018 in a corresponding data set, we determined changes as linear trends and analysed their variation by plant traits/groups, across season and time as well as their attribution to warming following IPCC methodology. Although spring and summer phases in wild plants advanced less (maximum advances in 1978–2007), more (~90%) and more significant (~60%) negative trends were present, being stronger in early spring, at higher elevations, but smaller for nonwoody insect‐pollinated species. These trends were strongly attributable to winter and spring warming. Findings for crop spring phases were similar, but were less pronounced. There were clearer and attributable signs for a delayed senescence in response to winter and spring warming. These changes resulted in a longer growing season, but a constant generative period in wild plants and a shortened one in agricultural crops. Phenology determined by farmers’ decisions differed noticeably from the purely climatic driven phases with smaller percentages of advancing (~75%) trends, but farmers’ spring activities were the only group with reinforced advancement, suggesting adaptation. Trends in farmers’ spring and summer activities were very likely/likely associated with the warming pattern. In contrast, the advance in autumn farming phases was significantly associated with below average summer warming. Thus, under ongoing climate change with decreased chilling the advancing phenology in spring and summer is still attributable to warming; even the farmers’ activities in these seasons mirror, to a lesser extent, the warming. Our findings point to adaptation to climate change in agriculture and reveal diverse implications for terrestrial ecosystems; the strong attribution supports the necessary mediation of warming impacts to the general public.  相似文献   
273.
Fire is a crucial event regulating the structure and functioning of many ecosystems. Yet few studies have focused on how fire affects taxonomic and functional diversities of soil microbial communities, along with changes in plant communities and soil carbon (C) and nitrogen (N) dynamics. Here, we analyze these effects in a grassland ecosystem 9 months after an experimental fire at the Jasper Ridge Global Change Experiment site in California, USA. Fire altered soil microbial communities considerably, with community assembly process analysis showing that environmental selection pressure was higher in burned sites. However, a small subset of highly connected taxa was able to withstand the disturbance. In addition, fire decreased the relative abundances of most functional genes associated with C degradation and N cycling, implicating a slowdown of microbial processes linked to soil C and N dynamics. In contrast, fire stimulated above‐ and belowground plant growth, likely enhancing plant–microbe competition for soil inorganic N, which was reduced by a factor of about 2. To synthesize those findings, we performed structural equation modeling, which showed that plants but not microbial communities were responsible for significantly higher soil respiration rates in burned sites. Together, our results demonstrate that fire ‘reboots’ the grassland ecosystem by differentially regulating plant and soil microbial communities, leading to significant changes in soil C and N dynamics.  相似文献   
274.
275.
During community assembly, plant functional traits are under selective pressure from processes operating at multiple spatial scales. However, in fragmented landscapes, there is little understanding of the relative importance of local-, patch- and landscape-scale processes in shaping trait distributions. Here, we investigate cross-scale influences of landscape change on traits that dictate plant life history strategies in re-assembling plant communities in a fragmented landscape in eastern China. Using forest dynamics plots (FDPs) on 29 land-bridge islands in which all woody plants have been georeferenced and identified to species, we characterized and derived two composite measures of trait variation, representing variation across the leaf economics spectrum and plant size. We then tested for trait shifts in response to local-, patch- and landscape-scale factors, and their potential cross-scale interactions. We found substantial community-wide trait changes along local-scale gradients (i.e. forest edge to interior): more acquisitive leaf economic traits and larger sized species occurred at edges, with a significant increase in trait means and trait range. Moreover, there were significant cross-scale interaction effects of patch and landscape variables on local-scale edge effects. Altered spatial arrangement of habitat in the surrounding landscape (i.e. declining habitat amount and increasing patch density), as well as decreasing area at the patch level, exacerbated edge effects on traits distributions. We suggest that synergistic interactions of landscape- and patch-scale processes, such as dispersal limitation, on local-scale environmental filtering at edges, together shape the spatial distributions of plant life history strategies in fragmented plant communities.  相似文献   
276.
Sterculia lanceolata, an important tropical woody plant, has high ornamental and medicinal value. To our knowledge, only brown root disease in this plant has been reported. In Nanning, Guangxi, China, an outbreak of leaf blight disease was observed on S. lanceolata in June 2019, with the leaf infection rate ranging from 80% to 100%. The disease seriously affected the leaves of trees and caused economic loss. Eight isolates were recovered from the infected leaves of different trees, and the pathogenicity was then determined by the methods of mycelial disc and conidial suspension, fulfilling Koch's postulates. According to the morphological and molecular biological characteristics of isolates, the pathogen causing leaf blight on S. lanceolata was identified as Colletotrichum siamense. Accurate identification of the pathogen provides a reliable basis for the control of the disease.  相似文献   
277.
Guo  Kaiqiang  Cao  Yin  Li  Zan  Zhou  Xiaoxiao  Ding  Rong  Chen  Kejing  Liu  Yan  Qiu  Yingkun  Wu  Zhen  Fang  Meijuan 《Amino acids》2020,52(5):793-809
Amino Acids - Glycine plays a key role in rapidly proliferating cancer cells such as A549 cells. Targeting glycine metabolism is considered as a potential means for cancer treatment. However, the...  相似文献   
278.
Mammalian Genome - Intracellular calcium is critical in orchestrating neuronal excitability and analgesia. Carbonic anhydrase-8 (CA8) regulates intracellular calcium signaling through allosteric...  相似文献   
279.
280.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号