首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19437篇
  免费   1444篇
  国内免费   1363篇
  22244篇
  2024年   52篇
  2023年   289篇
  2022年   631篇
  2021年   1064篇
  2020年   711篇
  2019年   890篇
  2018年   803篇
  2017年   615篇
  2016年   883篇
  2015年   1255篇
  2014年   1477篇
  2013年   1509篇
  2012年   1758篇
  2011年   1534篇
  2010年   954篇
  2009年   821篇
  2008年   955篇
  2007年   772篇
  2006年   736篇
  2005年   573篇
  2004年   529篇
  2003年   470篇
  2002年   407篇
  2001年   372篇
  2000年   341篇
  1999年   312篇
  1998年   205篇
  1997年   188篇
  1996年   174篇
  1995年   152篇
  1994年   115篇
  1993年   105篇
  1992年   132篇
  1991年   110篇
  1990年   96篇
  1989年   58篇
  1988年   46篇
  1987年   49篇
  1986年   25篇
  1985年   26篇
  1984年   16篇
  1983年   20篇
  1982年   4篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1972年   1篇
  1966年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
121.
Fine particulate matter (PM2.5) is the primary air pollutant that is able to induce airway injury. Compelling evidence has shown the involvement of IL‐17A in lung injury, while its contribution to PM2.5‐induced lung injury remains largely unknown. Here, we probed into the possible role of IL‐17A in mouse models of PM2.5‐induced lung injury. Mice were instilled with PM2.5 to construct a lung injury model. Flow cytometry was carried out to isolate γδT and Th17 cells. ELISA was adopted to detect the expression of inflammatory factors in the supernatant of lavage fluid. Primary bronchial epithelial cells (mBECs) were extracted, and the expression of TGF signalling pathway‐, autophagy‐ and PI3K/Akt/mTOR signalling pathway‐related proteins in mBECs was detected by immunofluorescence assay and Western blot analysis. The mitochondrial function was also evaluated. PM2.5 aggravated the inflammatory response through enhancing the secretion of IL‐17A by γδT/Th17 cells. Meanwhile, PM2.5 activated the TGF signalling pathway and induced EMT progression in bronchial epithelial cells, thereby contributing to pulmonary fibrosis. Besides, PM2.5 suppressed autophagy of bronchial epithelial cells by up‐regulating IL‐17A, which in turn activated the PI3K/Akt/mTOR signalling pathway. Furthermore, IL‐17A impaired the energy metabolism of airway epithelial cells in the PM2.5‐induced models. This study suggested that PM2.5 could inhibit autophagy of bronchial epithelial cells and promote pulmonary inflammation and fibrosis by inducing the secretion of IL‐17A in γδT and Th17 cells and regulating the PI3K/Akt/mTOR signalling pathway.  相似文献   
122.

The need for an easy to fabricate perfect and narrowband light absorber in the visible range of electromagnetic (EM) spectrum has always been in demand for many scientific and device applications. Here, we propose a metal-dielectric-metal (MDM) 1-D grating plasmonic structure as a perfect narrow band light absorber in the visible and its application in glucose detection. The proposed structure consists of a 1- D grating of gold on the top of a dielectric layer on a gold film. Optimization for dielectric grating index (n), grating thickness (t), grating width (W), and grating period (P) has been done to improve the performance of plasmonic structure by calculating its quality factor and figure-of-merit (FOM). The optimized plasmonic structure behaves as a perfect narrowband light absorber. The flexibility to work at a specific wavelength is also offered by the proposed structure through an appropriate selection of the geometrical parameters and refractive index of the dielectric grating. The equivalent RC model is used to understand different components of the proposed structure on the optical response. The absorption response of the structure is invariant to the incident angle. Moreover, the calculated absorbance of the proposed plasmonic structure is ~ 100% with a narrow full-width half maxima (FWHM) of ~ 2.8 nm. We have numerically demonstrated a potential application of the proposed MDM absorber as a plasmonic glucose sensor in the visible range with detection sensitivity in the range of 140 to 195 nm/RIU.

  相似文献   
123.
124.
125.
126.
The chemical composition and in vitro antioxidant activity of the essential oil of propolis (EOP) collected from 25 locations in China was investigated. Steam‐distillation extraction was used to extract the EOP, and chemical composition was identified by GC/MS. The antioxidant activities of EOP were also measured. The result showed that a total of 406 compounds were detected in EOP. The major compounds of Chinese EOP were cedrol, γ‐eudesmol, benzyl alcohol, phenethyl alcohol, 2‐methoxy‐4‐vinylphenol, 3,4‐dimethoxystyrene and guaiol. Principal component analysis revealed the significant correlation between EOP compositions and their origins, and certain correlation was detected between EOP and their color. Linear discriminant analysis showed that 88 % and 84 % of the propolis samples were predicted correctly as the groupings identified by climatic zone and the color, respectively. Furthermore, the differences of antioxidant activities of EOP were significant. EOP of Shandong had the strongest antioxidant activities, whereas EOP of Guangdong, Yunnan and Hunan showed the poorest.  相似文献   
127.
Parkinson's disease (PD) is the second most prevalent central nervous system (CNS) degenerative disease. Oxidative stress is one of key contributors to PD. Nuclear factor erythroid‐2‐related factor 2 (Nrf2) is considered to be a master regulator of many genes involved in anti‐oxidant stress to attenuate cell death. Therefore, activation of Nrf2 signalling provides an effective avenue to treat PD. Ellagic acid (EA), a natural polyphenolic contained in fruits and nuts, possesses amounts of pharmacological activities, such as anti‐oxidant stress and anti‐inflammation. Recent studies have confirmed EA could be used as a neuroprotective agent in neurodegenerative diseases. Here, mice subcutaneous injection of rotenone (ROT)‐induced DA neuronal damage was performed to investigate EA‐mediated neuroprotection. In addition, adult Nrf2 knockout mice and different cell cultures including MN9D‐enciched, MN9D‐BV‐2 and MN9D‐C6 cell co‐cultures were applied to explore the underlying mechanisms. Results demonstrated EA conferred neuroprotection against ROT‐induced DA neurotoxicity. Activation of Nrf2 signalling was involved in EA‐mediated DA neuroprotection, as evidenced by the following observations. First, EA activated Nrf2 signalling in ROT‐induced DA neuronal damage. Second, EA generated neuroprotection with the presence of astroglia and silence of Nrf2 in astroglia abolished EA‐mediated neuroprotection. Third, EA failed to produce DA neuroprotection in Nrf2 knockout mice. In conclusion, this study identified EA protected against DA neuronal loss via an Nrf2‐dependent manner.  相似文献   
128.
Chronic pancreatitis (CP) is characterized by persistent inflammation of the pancreas that results in progressive loss of the endocrine and exocrine compartment owing to atrophy and/or replacement with fibrotic tissue. Currently, the clinical therapeutic scheme of CP is mainly symptomatic treatment including pancreatic enzyme replacement, glycaemic control and nutritional support therapy, lacking of specific therapeutic drugs for prevention and suppression of inflammation and fibrosis aggravating in CP. Here, we investigated the effect of isoliquiritigenin (ILG), a chalcone‐type dietary compound derived from licorice, on pancreatic fibrosis and inflammation in a model of caerulein‐induced murine CP, and the results indicated that ILG notably alleviated pancreatic fibrosis and infiltration of macrophages. Further in vitro studies in human pancreatic stellate cells (hPSCs) showed that ILG exerted significant inhibition on the proliferation and activation of hPSCs, which may be due to negative regulation of the ERK1/2 and JNK1/2 activities. Moreover, ILG significantly restrained the M1 polarization of macrophages (RAW 264.7) via attenuation of the NF‐κB signalling pathway, whereas the M2 polarization was hardly affected. These findings indicated that ILG might be a potential anti‐inflammatory and anti‐fibrotic therapeutic agent for CP.  相似文献   
129.
Adenomyosis is also called internal endometriosis and affects about 20% of reproductive‐aged women. It seriously reduces life quality of patients because current drug therapies face with numerous challenges. Long‐term clinical application of mifepristone exhibits wonderful therapeutic effects with mild side‐effects in many disorders since 1982. Since adenomyosis is a refractory disease, we investigate whether mifepristone can be applied in the treatment of adenomyosis. In this study, we investigated the direct effects of mifepristone on human primary eutopic endometrial epithelial cells and stromal cells in adenomyosis. We found that mifepristone causes cell cycle arrest through inhibiting CDK1 and CDK2 expressions and induces cell apoptosis via the mitochondria‐dependent signalling pathway in endometrial epithelial cells and stromal cells of adenomyosis. Furthermore, mifepristone inhibits the migration of endometrial epithelial cells and stromal cells through decreasing CXCR4 expression and restricts the invasion of endometrial epithelial cells via suppression of epithelial‐mesenchymal transition in adenomyosis. We also found that mifepristone treatment decreases the uterine volume, CA125 concentration and increases the haemoglobin concentration in serum for adenomyosis patients. Therefore, we demonstrate that mifepristone could serve as a novel therapeutic drug in the treatment of adenomyosis, and therefore, the old dog can do a new trick.  相似文献   
130.
This study tested the hypothesis that melatonin (Mel) therapy preserved the brain architectural and functional integrity against ischaemic stroke (IS) dependently through suppressing the inflammatory/oxidative stress downstream signalling pathways. Adult male B6 (n = 6 per each B6 group) and TLR4 knockout (ie TLR4?/?) (n = 6 per each TLR4?/? group) mice were categorized into sham control (SCB6), SCTLR4?/?, ISB6, ISTLR4?/?, ISB6 + Mel (i.p. daily administration) and ISTLR4?/? + Mel (i.p. daily administration). By day 28 after IS, the protein expressions of inflammatory (HMBG1/TLR2/TLR4/MAL/MyD88/RAM TRIF/TRAF6/IKK‐α/p‐NF‐κB/nuclear‐NF‐κB/nuclear‐IRF‐3&7/IL‐1β/IL‐6/TNF‐α/IFN‐γ) and oxidative stress (NOX‐1/NOX‐2/ASK1/p‐MKK4&7/p‐JNK/p‐c‐JUN) downstream pathways as well as mitochondrial‐damaged markers (cytosolic cytochrome C/cyclophilin D/SRP1/autophagy) were highest in group ISB6, lowest in groups SCB6 and SCTLR4?/?, lower in group ISTLR4?/? + Mel than in groups ISTLR4?/? and ISB6 + Mel and lower in group ISB6 + Mel than in group ISTLR4?/? (all P < .0001). The brain infarct volume, brain infarct area and the number of inflammatory cells in brain (CD14/F4‐88) and in circulation (MPO+//Ly6C+/CD11b+//Ly6G+/CD11b+) exhibited an identical pattern, whereas the neurological function displayed an opposite pattern of inflammatory protein expression among the six groups (all P < .0001). In conclusion, TLR inflammatory and oxidative stress signallings played crucial roles for brain damage and impaired neurological function after IS that were significantly reversed by Mel therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号