首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35804篇
  免费   3160篇
  国内免费   4036篇
  2024年   84篇
  2023年   533篇
  2022年   1135篇
  2021年   1946篇
  2020年   1367篇
  2019年   1783篇
  2018年   1555篇
  2017年   1241篇
  2016年   1693篇
  2015年   2380篇
  2014年   2776篇
  2013年   2875篇
  2012年   3384篇
  2011年   3037篇
  2010年   1929篇
  2009年   1693篇
  2008年   1961篇
  2007年   1633篇
  2006年   1520篇
  2005年   1249篇
  2004年   1105篇
  2003年   964篇
  2002年   860篇
  2001年   674篇
  2000年   582篇
  1999年   508篇
  1998年   346篇
  1997年   303篇
  1996年   267篇
  1995年   213篇
  1994年   181篇
  1993年   152篇
  1992年   200篇
  1991年   164篇
  1990年   160篇
  1989年   100篇
  1988年   75篇
  1987年   70篇
  1986年   60篇
  1985年   46篇
  1984年   34篇
  1983年   41篇
  1982年   18篇
  1981年   14篇
  1980年   14篇
  1979年   20篇
  1978年   7篇
  1977年   10篇
  1976年   9篇
  1975年   7篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
992.
Nanomaterials with superior physiochemical properties have been rapidly developed and integrated in every aspect of cell engineering and therapy for translating their great promise to clinical success. Here we demonstrate the multifaceted roles played by innovatively-designed nanomaterials in addressing key challenges in cell engineering and therapy such as cell isolation from heterogeneous cell population, cell instruction in vitro to enable desired functionalities, and targeted cell delivery to therapeutic sites for prompting tissue repair. The emerging trends in this interdisciplinary and dynamic field are also highlighted, where the nanomaterial-engineered cells constitute the basis for establishing in vitro disease model; and nanomaterial-based in situ cell engineering are accomplished directly within the native tissue in vivo. We will witness the increasing importance of nanomaterials in revolutionizing the concept and toolset of cell engineering and therapy which will enrich our scientific understanding of diseases and ultimately fulfill the therapeutic demand in clinical medicine.  相似文献   
993.
994.
Estrogen receptor α (ERα) may play important roles in many estrogen physiological effects, but little is known about the fluctuation of ERα during the estrous cycle. In this study, the dynamic expression of ERα mRNA and protein in periodontal tissue during the estrous cycle were examined. Forty 12‐week‐old female rats were divided into four groups, based on the estrous cycle stage, and sacrificed. Immunohistochemistry and in situ hybridization were used to detect dynamic changes in ERα protein and mRNA in periodontal tissue during the estrous cycle, and data were analyzed by one‐way ANOVA and cosinor analysis for temporal patterns. Significant differences (p<0.05) were found in the expression of ERα protein and mRNA among the four groups. The expression of ERα protein and mRNA exhibited an infradian rhythm with a period of about 120 h (five days). The phase and amplitude differences between ERα protein and mRNA were not significant (p>0.05). The results suggest the expression of ERα is dynamic during the estrous cycle and that in the future chronobiologic methods should be used to study the mechanism of estrogen effect on periodontal tissue.  相似文献   
995.
996.
Our understanding of plant responses to enhanced ultraviolet‐B (UV‐B) radiation has improved over recent decades. However, research on cryptogams is scarce and it remains controversial whether UV‐B radiation causes changes in physiology related to photosynthesis. To investigate the effects of supplementary UV‐B radiation on photosynthesis and chloroplast ultrastructure in Bryum argenteum Hedw., specimens were cultured for 10 days under four UV‐B treatments (2.75, 3.08, 3.25 and 3.41 W m–2), simulating depletion of 0% (control), 6%, 9% and 12% of stratospheric ozone at the latitude of Shapotou, a temperate desert area of northwest China. Analyses showed malondialdehyde content significantly increased, whereas chlorophyll (Chl) fluorescence parameters and Chl contents decreased with increased UV‐B intensity. These results corresponded with changes in thylakoid protein complexes and chloroplast ultrastructure. Overall, enhanced UV‐B radiation leads to significant decreases in photosynthetic function and serious destruction of the chloroplast ultrastructure of B. argenteum. The degree of negative influences increased with the intensity of UV‐B radiation. These results may not only provide a potential mechanism for supplemental UV‐B effects on photosynthesis of moss crust, but also establish a theoretical basis for further studies of adaptation and response mechanisms of desert ecosystems under future ozone depletion.  相似文献   
997.

Aims

There is a need to predict trace metal concentration in plant organs at given development stages. The aim of this work was to describe the Cd hyperaccumulation kinetics in the different plant organs, throughout the complete cultivation cycle, independently of a possible soil effect.

Methods

Plants of Noccaea caerulescens were exposed in aeroponics to three constantly low Cd concentrations and harvested at 6 to 11 dates, until siliquae formation.

Results

Dry matter allocation between roots and shoots was constant over time and exposure concentrations, as well as Cd allocation. However 86 % of the Cd taken up was allocated to the shoots. Senescent rosette leaves showed similar Cd concentrations to the living ones, suggesting no redistribution from old to young organs. The Cd root influx was proportional to the exposure concentration and constant over time, indicating that plant development had no effect on this. The bio-concentration factor (BCF), i.e. [Cd]plant/[Cd2+]solution for the whole plant, roots or shoots was independent of the exposure concentration and of the plant stage.

Conclusions

Cadmium uptake in a given plant part could therefore be predicted at any plant stage by multiplying the plant part dry matter by the corresponding BCF and the Cd2+ concentration in the exposure solution.  相似文献   
998.

Aims

Our aims were to characterize the fate of leaf-litter-derived nitrogen in the plant-soil-microbe system of a temperate beech forest of Southern Germany and to identify its importance for N nutrition of beech seedlings.

Methods

15N-labelled leaf litter was traced in situ into abiotic and biotic N pools in mineral soil as well as into beech seedlings and mycorrhizal root tips over three growing seasons.

Results

There was a rapid transfer of 15N into the mineral soil already 21 days after tracer application with soil microbial biomass initially representing the dominant litter-N sink. However, 15N recovery in non-extractable soil N pools strongly increased over time and subsequently became the dominant 15N sink. Recovery in plant biomass accounted for only 0.025 % of 15N excess after 876 days. After three growing seasons, 15N excess recovery was characterized by the following sequence: non-extractable soil N?>>?extractable soil N including microbial biomass?>>?plant biomass?>?ectomycorrhizal root tips.

Conclusions

After quick vertical dislocation and cycling through microbial N pools, there was a rapid stabilization of leaf-litter-derived N in non-extractable N pools of the mineral soil. Very low 15N recovery in beech seedlings suggests a high importance of other N sources such as root litter for N nutrition of beech understorey.  相似文献   
999.

Background and aims

Anthropogenic nitrogen (N) and phosphorus (P) input has changed the relative importance of nutrient elements. This study aimed to examine the effects of different nutrient conditions on the interaction between exotic and native plants.

Methods

We conducted a greenhouse experiment with a native species Quercus acutissima Carr. and an exotic species Rhus typhina L. grown in monocultures or mixtures, under three N:P ratios (5, 15 and 45 corresponding to N-limited, basic N and P supply and P-limited conditions, respectively). After 12 weeks of treatment, traits related to biomass allocation, leaf physiology and nutrient absorption were determined.

Results

R. typhina was dominant under competition, with a high capacity for carbon assimilation and nutrient absorption, and the dominance was unaffected by increasing N:P ratios. R. typhina invested more photosynthate in leaves and more nutrients in the photosynthetic apparatus, enabling high biomass production. Q. acutissima invested more photosynthate in roots and more nutrients in leaf persistence at the expense of reduced carbon assimilation capacity.

Conclusions

Different trade-offs in biomass and nutrient allocation of the two species is an important reason for their distinct performances under competition and helps R. typhina to maintain dominance under different nutrient conditions.  相似文献   
1000.

Background and aims

Litter decomposition is regulated by e.g. substrate quality and environmental factors, particularly water availability. The partitioning of nutrients released from litter between vegetation and soil microorganisms may, therefore, be affected by changing climate. This study aimed to elucidate the impact of litter type and drought on the fate of litter-derived N in beech seedlings and soil microbes.

Methods

We quantified 15N recovery rates in plant and soil N pools by adding 15N-labelled leaf and/or root litter under controlled conditions.

Results

Root litter was favoured over leaf litter for N acquisition by beech seedlings and soil microorganisms. Drought reduced 15N recovery from litter in seedlings thereby affecting root N nutrition. 15N accumulated in seedlings in different sinks depending on litter type.

Conclusions

Root turnover appears to influence (a) N availability in the soil for plants and soil microbes and (b) N acquisition and retention despite a presumably extremely dynamic turnover of microbial biomass. Compared to soil microorganisms, beech seedlings represent a very minor short-term N sink, despite a potentially high N residence time. Furthermore, soil microbes constitute a significant N pool that can be released in the long term and, thus, may become available for N nutrition of plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号