首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   649篇
  免费   52篇
  701篇
  2021年   6篇
  2020年   6篇
  2019年   7篇
  2017年   5篇
  2016年   14篇
  2015年   15篇
  2014年   22篇
  2013年   30篇
  2012年   34篇
  2011年   33篇
  2010年   27篇
  2009年   16篇
  2008年   25篇
  2007年   34篇
  2006年   29篇
  2005年   26篇
  2004年   16篇
  2003年   33篇
  2002年   32篇
  2001年   10篇
  2000年   7篇
  1999年   12篇
  1998年   6篇
  1997年   7篇
  1996年   8篇
  1995年   10篇
  1994年   10篇
  1993年   6篇
  1992年   7篇
  1991年   7篇
  1990年   7篇
  1989年   8篇
  1986年   5篇
  1984年   7篇
  1983年   8篇
  1982年   9篇
  1980年   6篇
  1977年   4篇
  1976年   6篇
  1974年   7篇
  1968年   7篇
  1967年   6篇
  1963年   5篇
  1958年   4篇
  1951年   5篇
  1928年   5篇
  1911年   7篇
  1909年   4篇
  1908年   5篇
  1906年   4篇
排序方式: 共有701条查询结果,搜索用时 15 毫秒
61.
Structure determination of T cell protein-tyrosine phosphatase   总被引:2,自引:0,他引:2  
Protein-tyrosine phosphatase 1B (PTP1B) has recently received much attention as a potential drug target in type 2 diabetes. This has in particular been spurred by the finding that PTP1B knockout mice show increased insulin sensitivity and resistance to diet-induced obesity. Surprisingly, the highly homologous T cell protein-tyrosine phosphatase (TC-PTP) has received much less attention, and no x-ray structure has been provided. We have previously co-crystallized PTP1B with a number of low molecular weight inhibitors that inhibit TC-PTP with similar efficiency. Unexpectedly, we were not able to co-crystallize TC-PTP with the same set of inhibitors. This seems to be due to a multimerization process where residues 130-132, the DDQ loop, from one molecule is inserted into the active site of the neighboring molecule, resulting in a continuous string of interacting TC-PTP molecules. Importantly, despite the high degree of functional and structural similarity between TC-PTP and PTP1B, we have been able to identify areas close to the active site that might be addressed to develop selective inhibitors of each enzyme.  相似文献   
62.
Translocation from the cytosol to the nucleus is an essential step in phytochrome (phy) signal transduction. In the case of phytochrome A (phyA), this step occurs with the help of FHY1 (far-red-elongated hypocotyl 1), a specific transport protein. To investigate the components involved in phyA transport, we used a cell-free system that facilitates the controlled addition of transport factors. For this purpose, we isolated nuclei from the unicellular green algae Acetabularia acetabulum . These nuclei are up to 100 μm in diameter and allow easy detection of imported proteins. Experiments with isolated nuclei of Acetabularia showed that FHY1 is sufficient for phyA transport. The reconstituted system demonstrates all the characteristics of phytochrome transport in Arabidopsis thaliana . In addition, FHY1 was also actively exported from the nucleus, consistent with its role as a shuttle protein in plants. Therefore, we believe that isolated Acetabularia nuclei may be used as a general tool to study nuclear transport of plant proteins.  相似文献   
63.
Immunity against infection with Listeria monocytogenes is not achieved from innate immune stimulation by contact with killed but requires viable Listeria gaining access to the cytosol of infected cells. It has remained ill‐defined how such immune sensing of live Listeria occurs. Here, we report that efficient cytosolic immune sensing requires access of nucleic acids derived from live Listeria to the cytoplasm of infected cells. We found that Listeria released nucleic acids and that such secreted bacterial RNA/DNA was recognized by the cytosolic sensors RIG‐I, MDA5 and STING thereby triggering interferon β production. Secreted Listeria nucleic acids also caused RIG‐I‐dependent IL‐1β‐production and inflammasome activation. The signalling molecule CARD9 contributed to IL‐1β production in response to secreted nucleic acids. In conclusion, cytosolic recognition of secreted bacterial nucleic acids by RIG‐I provides a mechanistic explanation for efficient induction of immunity by live bacteria.  相似文献   
64.
65.
66.
A seasonal study of urotensin II content of the urophysis of the goby, Gillichthys mirabilis. was conducted from March 1979 to June 1980 in relation to certain internal and environmental changes. Urotensin II content (lowest in November–January) is inversely correlated with female gonadosomatic index and to some extent with rainfall (and hence dilution of the environmental salinity). In addition, there appears to be a direct correlation between UII content and daylength and temperature.  相似文献   
67.
68.
The spatiotemporal integration of adhesion and signaling during neuritogenesis is an important prerequisite for the establishment of neuronal networks in the developing brain. In this study, we describe the role of the L1-type CAM Neuroglian protein (NRG) in different steps of Drosophila mushroom body (MB) neuron axonogenesis. Selective axon bundling in the peduncle requires both the extracellular and the intracellular domain of NRG. We uncover a novel role for the ZO-1 homolog Polychaetoid (PYD) in axon branching and in sister branch outgrowth and guidance downstream of the neuron-specific isoform NRG-180. Furthermore, genetic analyses show that the role of NRG in different aspects of MB axonal development not only involves PYD, but also TRIO, SEMA-1A and RAC1.  相似文献   
69.
A key enzyme within the purine salvage pathway of parasites, nucleoside hydrolase, is proposed as a good target for new antiparasitic drugs. We have developed N-arylmethyl-iminoribitol derivatives as a novel class of inhibitors against a purine specific nucleoside hydrolase from Trypanosoma vivax. Several of our inhibitors exhibited low nanomolar activity, with 1,4-dideoxy-1,4-imino-N-(8-quinolinyl)methyl-d-ribitol (UAMC-00115, K(i) 10.8nM), N-(9-deaza-adenin-9-yl)methyl-1,4-dideoxy-1,4-imino-d-ribitol (K(i) 4.1nM), and N-(9-deazahypoxanthin-9-yl)methyl-1,4-dideoxy-1,4-imino-d-ribitol (K(i) 4.4nM) being the three most active compounds. Docking studies of the most active inhibitors revealed several important interactions with the enzyme. Among these interactions are aromatic stacking of the nucleobase mimic with two Trp-residues, and hydrogen bonds between the hydroxyl groups of the inhibitors and amino acid residues in the active site. During the course of these docking studies we also identified a strong interaction between the Asp40 residue from the enzyme and the inhibitor. This is an interaction which has not previously been considered as being important.  相似文献   
70.

Background

Bacterial respiratory tract infections, mainly caused by Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis are among the leading causes of global mortality and morbidity. Increased resistance of these pathogens to existing antibiotics necessitates the search for novel targets to develop potent antimicrobials.

Result

Here, we report a proof of concept study for the reliable identification of potential drug targets in these human respiratory pathogens by combining high-density transposon mutagenesis, high-throughput sequencing, and integrative genomics. Approximately 20% of all genes in these three species were essential for growth and viability, including 128 essential and conserved genes, part of 47 metabolic pathways. By comparing these essential genes to the human genome, and a database of genes from commensal human gut microbiota, we identified and excluded potential drug targets in respiratory tract pathogens that will have off-target effects in the host, or disrupt the natural host microbiota. We propose 249 potential drug targets, 67 of which are targets for 75 FDA-approved antimicrobials and 35 other researched small molecule inhibitors. Two out of four selected novel targets were experimentally validated, proofing the concept.

Conclusion

Here we have pioneered an attempt in systematically combining the power of high-density transposon mutagenesis, high-throughput sequencing, and integrative genomics to discover potential drug targets at genome-scale. By circumventing the time-consuming and expensive laboratory screens traditionally used to select potential drug targets, our approach provides an attractive alternative that could accelerate the much needed discovery of novel antimicrobials.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-958) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号