首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5324篇
  免费   395篇
  国内免费   4篇
  2023年   31篇
  2022年   48篇
  2021年   140篇
  2020年   72篇
  2019年   100篇
  2018年   124篇
  2017年   97篇
  2016年   144篇
  2015年   256篇
  2014年   304篇
  2013年   353篇
  2012年   427篇
  2011年   375篇
  2010年   216篇
  2009年   221篇
  2008年   268篇
  2007年   265篇
  2006年   225篇
  2005年   222篇
  2004年   219篇
  2003年   210篇
  2002年   191篇
  2001年   67篇
  2000年   36篇
  1999年   49篇
  1998年   50篇
  1997年   39篇
  1996年   45篇
  1995年   37篇
  1994年   32篇
  1993年   41篇
  1992年   41篇
  1991年   28篇
  1990年   29篇
  1989年   19篇
  1988年   41篇
  1987年   26篇
  1986年   18篇
  1985年   24篇
  1984年   30篇
  1983年   26篇
  1982年   33篇
  1981年   31篇
  1980年   21篇
  1978年   30篇
  1977年   17篇
  1976年   24篇
  1975年   18篇
  1974年   27篇
  1973年   17篇
排序方式: 共有5723条查询结果,搜索用时 15 毫秒
981.
Although P2rx7 has been proposed as a type 1 diabetes (T1D) susceptibility gene in NOD mice, its potential pathogenic role has not been directly determined. To test this possibility, we generated a new NOD stock deficient in P2X(7) receptors. T1D development was not altered by P2X(7) ablation. Previous studies found CD38 knockout (KO) NOD mice developed accelerated T1D partly because of a loss of CD4(+) invariant NKT (iNKT) cells and Foxp3(+) regulatory T cells (Tregs). These immunoregulatory T cell populations are highly sensitive to NAD-induced cell death activated by ADP ribosyltransferase-2 (ART2)-mediated ADP ribosylation of P2X(7) receptors. Therefore, we asked whether T1D acceleration was suppressed in a double-KO NOD stock lacking both P2X(7) and CD38 by rescuing CD4(+) iNKT cells and Tregs from NAD-induced cell death. We demonstrated that P2X(7) was required for T1D acceleration induced by CD38 deficiency. The CD38 KO-induced defects in homeostasis of CD4(+) iNKT cells and Tregs were corrected by coablation of P2X(7). T1D acceleration in CD38-deficient NOD mice also requires ART2 expression. If increased ADP ribosylation of P2X(7) in CD38-deficient NOD mice underlies disease acceleration, then a comparable T1D incidence should be induced by coablation of both CD38 and ART2, or CD38 and P2X(7). However, a previously established NOD stock deficient in both CD38 and ART2 expression is T1D resistant. This study demonstrated the presence of a T1D resistance gene closely linked to the ablated Cd38 allele in the previously reported NOD stock also lacking ART2, but not in the newly generated CD38/P2X(7) double-KO line.  相似文献   
982.
The Tyr402His polymorphism of complement factor H (FH) with 20 short complement regulator (SCR) domains is associated with age-related macular degeneration (AMD). How FH contributes to disease pathology is not clear. Both FH and high concentrations of zinc are found in drusen deposits, the key feature of AMD. Heterozygous FH is inhibited by zinc, which causes FH to aggregate. Here, zinc binding to homozygous FH was studied. By analytical ultracentrifugation, large amounts of oligomers were observed with both the native Tyr402 and the AMD-risk His402 homozygous allotypes of FH and both the recombinant SCR-6/8 allotypes with Tyr/His402. X-ray scattering also showed that both FH and SCR-6/8 allotypes strongly aggregated at > 10 μM zinc. The SCR-1/5 and SCR-16/20 fragments were less likely to bind zinc. These observations were supported by bioinformatics predictions. Starting from known zinc binding sites in crystal structures, we predicted 202 putative partial surface zinc binding sites in FH, most of which were in SCR-6. Metal site prediction web servers also suggested that SCR-6 and other domains bind zinc. Predicted SCR-6/8 dimer structures showed that zinc binding sites could be formed at the protein-protein interface that would lead to daisy-chained oligomers. It was concluded that zinc binds weakly to FH at multiple surface locations, most probably within the functionally important SCR-6/8 domains, and this explains why zinc inhibits FH activity. Given the high pathophysiological levels of bioavailable zinc present in subretinal deposits, we discuss how zinc binding to FH may contribute to deposit formation and inflammation associated with AMD.  相似文献   
983.
Mouse mast cell protease-4 (mMCP-4) has been linked to autoimmune and inflammatory diseases, although the exact mechanisms underlying its role in these pathological conditions remain unclear. Here, we have found that mMCP-4 is critical in a mouse model of the autoimmune skin blistering disease bullous pemphigoid (BP). Mice lacking mMCP-4 were resistant to experimental BP. Complement activation, mast cell (MC) degranulation, and the early phase of neutrophil (PMN) recruitment occurred comparably in mMCP-4(-/-) and WT mice. However, without mMCP-4, activation of matrix metalloproteinase (MMP)-9 was impaired in cultured mMCP-4(-/-) MCs and in the skin of pathogenic IgG-injected mMCP-4(-/-) mice. MMP-9 activation was not fully restored by local reconstitution with WT or mMCP-4(-/-) PMNs. Local reconstitution with mMCP-4(+/+) MCs, but not with mMCP-4(-/-) MCs, restored blistering, MMP-9 activation, and PMN recruitment in mMCP-4(-/-) mice. mMCP-4 also degraded the hemidesmosomal transmembrane protein BP180 both in the skin and in vitro. These results demonstrate that mMCP-4 plays two different roles in the pathogenesis of experimental BP, by both activating MMP-9 and by cleaving BP180, leading to injury of the hemidesmosomes and extracellular matrix of the basement membrane zone.  相似文献   
984.
During cell division, interaction between kinetochores and dynamic spindle microtubules governs chromosome movements. The microtubule depolymerase mitotic centromere-associated kinesin (MCAK) is a key regulator of mitotic spindle assembly and dynamics. However, the regulatory mechanisms underlying its depolymerase activity during the cell cycle remain elusive. Here, we showed that PLK1 is a novel regulator of MCAK in mammalian cells. MCAK interacts with PLK1 in vitro and in vivo. The neck and motor domain of MCAK associates with the kinase domain of PLK1. MCAK is a novel substrate of PLK1, and the phosphorylation stimulates its microtubule depolymerization activity of MCAK in vivo. Overexpression of a polo-like kinase 1 phosphomimetic mutant MCAK causes a dramatic increase in misaligned chromosomes and in multipolar spindles in mitotic cells, whereas overexpression of a nonphosphorylatable MCAK mutant results in aberrant anaphase with sister chromatid bridges, suggesting that precise regulation of the MCAK activity by PLK1 phosphorylation is critical for proper microtubule dynamics and essential for the faithful chromosome segregation. We reasoned that dynamic regulation of MCAK phosphorylation by PLK1 is required to orchestrate faithful cell division, whereas the high levels of PLK1 and MCAK activities seen in cancer cells may account for a mechanism underlying the pathogenesis of genomic instability.  相似文献   
985.
The ATP binding cassette (ABC) transporter Aus1 is expressed under anaerobic growth conditions at the plasma membrane of the yeast Saccharomyces cerevisiae and is required for sterol uptake. These observations suggest that Aus1 promotes the translocation of sterols across membranes, but the precise transport mechanism has yet to be identified. In this study, an extraction and purification procedure was developed to characterize the Aus1 transporter. The detergent-solubilized protein was able to bind and hydrolyze ATP. Mutagenesis of the conserved lysine to methionine in the Walker A motif abolished ATP hydrolysis. Likewise, ATP hydrolysis was inhibited by classical inhibitors of ABC transporters. Upon reconstitution into proteoliposomes, the ATPase activity of Aus1 was specifically stimulated by phosphatidylserine (PS) in a stereoselective manner. We also found that Aus1-dependent sterol uptake, but not Aus1 expression and trafficking to the plasma membrane, was affected by changes in cellular PS levels. These results suggest a direct interaction between Aus1 and PS that is critical for the activity of the transporter.  相似文献   
986.
In the postantibiotic era, available treatment options for severe bacterial infections caused by methicillin-resistant Staphylococcus aureus have become limited. Therefore, new and innovative approaches are needed to combat such life-threatening infections. Virulence factor expression in S. aureus is regulated in a cell density-dependent manner using “quorum sensing,” which involves generation and secretion of autoinducing peptides (AIPs) into the surrounding environment to activate a bacterial sensor kinase at a particular threshold concentration. Mouse monoclonal antibody AP4-24H11 was shown previously to blunt quorum sensing-mediated changes in gene expression in vitro and protect mice from a lethal dose of S. aureus by sequestering the AIP signal. We have elucidated the crystal structure of the AP4-24H11 Fab in complex with AIP-4 at 2.5 Å resolution to determine its mechanism of ligand recognition. A key GluH95 provides much of the binding specificity through formation of hydrogen bonds with each of the four amide nitrogens in the AIP-4 macrocyclic ring. Importantly, these structural data give clues as to the interactions between the cognate staphylococcal AIP receptors AgrC and the AIPs, as AP4-24H11·AIP-4 binding recapitulates features that have been proposed for AgrC-AIP recognition. Additionally, these structural insights may enable the engineering of AIP cross-reactive antibodies or quorum quenching vaccines for use in active or passive immunotherapy for prevention or treatment of S. aureus infections.  相似文献   
987.
A large-scale mutagenesis screen was performed in Medaka to identify genes acting in diverse developmental processes. Mutations were identified in homozygous F3 progeny derived from ENU-treated founder males. In addition to the morphological inspection of live embryos, other approaches were used to detect abnormalities in organogenesis and in specific cellular processes, including germ cell migration, nerve tract formation, sensory organ differentiation and DNA repair. Among 2031 embryonic lethal mutations identified, 312 causing defects in organogenesis were selected for further analyses. From these, 126 mutations were characterized genetically and assigned to 105 genes. The similarity of the development of Medaka and zebrafish facilitated the comparison of mutant phenotypes, which indicated that many mutations in Medaka cause unique phenotypes so far unrecorded in zebrafish. Even when mutations of the two fish species cause a similar phenotype such as one-eyed-pinhead or parachute, more genes were found in Medaka than in zebrafish that produced the same phenotype when mutated. These observations suggest that many Medaka mutants represent new genes and, therefore, are important complements to the collection of zebrafish mutants that have proven so valuable for exploring genomic function in development.  相似文献   
988.
The oxidation of spermidine or homospermidine with bovine serum amine oxidase (BSAO) was monitored in situ, using proton nuclear magnetic resonance spectroscopy in water with 10% D(2)O. NMR assignments were performed by spin decoupling and COSY spectra or by comparison with data from synthetic aminoaldehydes. The results represent the first in situ characterisation of the highly reactive aminoaldehydes and showed oxidation at the N(1) amino group of spermidine and homospermidine. Comparison of homospermidine with a variety of substrates revealed that among straight chain di- and polyamines both an aminopropyl group and two primary amino groups separated by seven (norspermidine) or eight (spermidine) carbon atoms were required for optimal substrate ability. However, highest activity was seen with the substrate N-(4-aminobutyl)hexahydropyrimidine, showing that the substrate channel of BSAO has a dual substrate preference, with moderately bulky substituents at the distal end of a diamine contributing equally well as an alkyl amino group. Cytotoxic investigations of a variety of substrates for BSAO, confirmed previous results, that cytotoxicity is primarily linked to polyamines encompassing the aminopropyl moiety. No acrolein was observed at any time during the oxidation showing that it reacts very fast with available amino groups forming a variety of derivatives.  相似文献   
989.
In a large scale mutagenesis screen of Medaka we identified 60 recessive zygotic mutations that affect retina development. Based on the onset and type of phenotypic abnormalities, the mutants were grouped into five categories: the first includes 11 mutants that are affected in neural plate and optic vesicle formation. The second group comprises 15 mutants that are impaired in optic vesicle growth. The third group includes 18 mutants that are affected in optic cup development. The fourth group contains 13 mutants with defects in retinal differentiation. 12 of these have smaller eyes, whereas one mutation results in enlarged eyes. The fifth group consists of three mutants with defects in retinal pigmentation. The collection of mutants will be used to address the molecular genetic mechanisms underlying vertebrate eye formation.  相似文献   
990.
The forebrain, consisting of the telencephalon and diencephalon, is essential for processing sensory information. To genetically dissect formation of the forebrain in vertebrates, we carried out a systematic screen for mutations affecting morphogenesis of the forebrain in Medaka. Thirty-three mutations defining 25 genes affecting the morphological development of the forebrain were grouped into two classes. Class 1 mutants commonly showing a decrease in forebrain size, were further divided into subclasses 1A to 1D. Class 1A mutation (1 gene) caused an early defect evidenced by the lack of bf1 expression, Class 1B mutations (6 genes) patterning defects revealed by the aberrant expression of regional marker genes, Class 1C mutation (1 gene) a defect in a later stage, and Class 1D (3 genes) a midline defect analogous to the zebrafish one-eyed pinhead mutation. Class 2 mutations caused morphological abnormalities in the forebrain without considerably affecting its size, Class 2A mutations (6 genes) caused abnormalities in the development of the ventricle, Class 2B mutations (2 genes) severely affected the anterior commissure, and Class 2C (6 genes) mutations resulted in a unique forebrain morphology. Many of these mutants showed the compromised sonic hedgehog expression in the zona-limitans-intrathalamica (zli), arguing for the importance of this structure as a secondary signaling center. These mutants should provide important clues to the elucidation of the molecular mechanisms underlying forebrain development, and shed new light on phylogenically conserved and divergent functions in the developmental process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号